

Characterizing the Directional Dependence of Organic Scintillators from a **Fission Source** Ruby Araj, Patricia Schuster, Ph.D. Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA Consortium for Verification Technology (CVT)

Introduction and motivation:

- Organic scintillators important for nuclear security:
 - Ability to detect, discriminate n vs. γ
 - Relatively affordable and robust
- Efforts to produce a new generation of materials with improved performance: - Understanding of internal processes governing light production incomplete

Prior Method to Characterizing the Effect

-Need to know the direction and energy of the proton recoil - For mono-energetic sources, select proton recoil events in the forward direction. - This will make energy and direction of proton recoil s known

when:

$$E_{\rm recoil} = E_n \cos^2 \alpha$$

 $E_{\text{recoil}} = E_n$

Unique direction of proton recoil

- Study the effect of anisotropy on light output production and pulse shape to better understand the internal processes.

- What are the methods used to characterize anisotropy from:
 - Mono-energetic neutron source
 - Fission source

Cf-252 Fission Spectrum

0.30

0.25

≥ 0.20

E 0.15

0.10

0.05

0.00

Light Output Spectrum from a Mono-energetic Source

Research Question:

En = 4.2 Mev

How does the anisotropy effect appear for measurements of distributed energy neutron sources, such as Watt-spectrum fission sources?

Dependence on particle type, pulse shape discrimination (PSD)

Pulse shape distribution measured from a Cf252 source

Change in pulse shape distribution for

DT neutron generator measurements

Light output (IDCL

Dependence on interaction direction (of heavy charged particle)

Rotational stage positions

four crystals at all possible

 (ϕ, θ) orientations

Anthracene

Measure expected light output \hat{L} and pulse shape \hat{S} in Stilbene for 14 MeV proton recoil vs. p recoil direction. Quantify effect as $A_L = \frac{L_{max}}{L_{min}}$, $A_S = \frac{S_{max}}{S_{min}}$.

All in sync

- When using a fission source, direction and energy of proton recoil are no longer known.
- The light output response from a fission source is a decaying exponential.
- The response could be viewed as a multiple mono-energetic light output responses produced by each neutron in the f in the Cf-252 spectrum

Research Plan

Light Output Spectrum from Cf-252

Treat Spectrum as Multi-Mono-Energetic Sources

Measurements

Take measurements along each of the known crystal axes: a, b and c

Calculations

- Analyze produced distributions for presence of anisotropy

 $A_{\hat{L}} = 1.182 \pm 0.006$ $A_{\hat{S}} = 1.081 \pm 0.001$

Develop a simulation of the experiment and compare results

Min, Max out of sync Saddle in sync

 $A_{\hat{L}} = 1.155 \pm 0.006$ $A_{\hat{S}} = 1.798 \pm 0.006$

This work was funded in-part by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534