

Evaluation of next-generation infrasound sensors: calibration techniques and air-blast data parameterization

1. Motivation

- A new generation of sensors is emerging to supplement legacy IMS infrasound sensors and traditional networks
- Notable features include reduction in size, weight, power, and cost, and integration of analog-to-digital converters
- We report on the characterization of the MB3 digital (MB3d) infrasound sensor against its predecessors • We use air-blast and acoustic pressure time-histories recorded by traditional overpressure sensors from controlled surface explosions to improve air-blast models
- Improved air-blast and acoustic models with well-characterized infrasound sensors will contribute to the improved detection and characterization of blasts, undeclared activities and inaccessible facilities

2. MB3d Infrasound Sensor Evaluation

- The MB3d is a recent digital infrasound sensor developed to meet the Comprehensive Nuclear-Test-Ban Treaty (CTBT) International Monitoring System (IMS) requirements, and currently the only one with a self-calibration capability
- We examined the digital output signals of the MB3d sensor against two established analog sensors connected to an external digitizer, and validated its response in the 0.02 – 4 Hz IMS infrasound pass band
- Our findings show MB3d improvements within the passband, and possible sensitivity to higher-frequency seismic vibration

Figure 1. Relative response results for MB3d and reference sensors based on measurements from a white noise broadband source.

K. Asmar¹, J. Schnurr¹, M. Garces¹, A. Christe¹, D.Hart³, A. Rodgers², K. Kim², B. Williams¹ ¹Infrasound Laboratory, University of Hawaii at Manoa ²Geophysical Monitoring Program, Lawrence Livermore National Laboratory ³Sandia National Laboratories, Albuquerque NM Milton Garces, milton@isla.hawaii.edu

Consortium for Verification Technology (CVT)

3. Improved Overpressure Modeling for Near-Surface Explosions

• The accurate recording and characterization of air-blast acoustic waveforms are key components of the forensic analysis of explosive events

• We improved impulse models that better account for non-linearity in log space due to propagation effects • The measurements from these datasets are valuable for testing signal models and yield estimation algorithms for above ground explosions

Impulse Ratio Impulse Fit / Impulse F Positive Impuls $Distance(\frac{m}{d})$ Distance

Figure 3. Empirical non-linear model results. The fit could potentially extend the range over which explosion yield is estimated from impulse measurements

Air blast negative phase trends · F 10¹ 10^{2} 10^{3} $Distance(\frac{m}{1})$ $Distance(\frac{m}{1})$

Figure 5. Air-blast positive to negative phase ratios. These previously overlooked negative phase features could contribute to improving the accuracy of yield estimates.

4. Conclusions and Future Work

We have validated the response model for the next-generation MB3d infrasound sensor in the 0.02 – 4 Hz pass band.

We have developed improved impulse models for air-blast measurements and proposed the incorporation of rise time and negative phase parameters in future air-blast modeling

Empirical nonlinear model: Impulse vs. range

Physics based nonlinear model: Impulse as a function of range and pulse duration

Figure 4. Physics-based non-linear impulse model accounts for the yield-dependent positive phase duration.

