Moderated DT Neutron Source for Zero-Knowledge Isotopic Differentiation

Mike Hepler

Princeton University

Organization

- State of Zero-Knowledge Experiment
- Moderated DT Collimator Source
- Moderator Integration and Optimization
- Simulation Test Results

State of ZKP: Princeton

State of ZKP

а

* "A physical zero-knowledge object-comparison system for nuclear warhead verification," Nature Communications, 2016

Consortium for Verification Technology

*

State of ZKP: Princeton

DT Neutron Generator

Above: Thermofisher

Isotopic Differentiation

Isotopic Differentiation

Activated	Accountable	Hazardous	Cost
Х	-	-	-
Х	-	-	-
-	-	-	X
-	-	Х	-
-	-	-	-
-	-	-	-
	Activated X X - - - -	ActivatedAccountableX-X	ActivatedAccountableHazardousXXXX

* Mozhayev, Piper, Rathbone, McDonald, 2016

Moderator Material: Spherical Tally

Moderator Material: Take-away

- Copper and Stainless Steel considered
 - Non-hazardous
 - Machinable
 - Easily procured

• Stainless Steel:

- Less attenuation in total neutron fraction than Cu
- Cheaper by factor of ~1/2
- Requires greater thickness to achieve same spectrum fraction below 1 MeV

Collimator Integration

Channel Angle

Channel Angle: Cu

Channel Angle: Cu 30 cm

Channel Angle: Cu 30 cm

Channel Angle: Take-away

- Narrow-angle channel:
 - Unscattered 14 MeV neutrons preferentially
- Wide-angle channel:
 - Increase total fraction of neutrons at aperture exit
 - Increase spectrum fraction below 1 MeV
 - "Inverted" design allows for full width of moderator to be exposed

Moderator Angular Sections

Material	Total Increase	Below 1 MeV
Cu	2.7	86% -> 95%
SS	2.8	82% -> 94%

Moderator Angular Sections

Moderator Angular Sections

Moderator Angle: Take-away

- Full Circular Moderator is Preferable
 - Significant contribution in total flux from wide angles and behind
 - Contributions to below 1 MeV fraction from wide angles and behind

Moderator Height and Exposure

$$\begin{aligned} h_{mod} &= \pm 15 \ c \end{aligned} \qquad \begin{array}{c|c} \text{Material} & \text{Total} & \text{Below 1} \\ \text{Increase} & \text{MeV} \end{aligned} \qquad u &= \pm 30 \ cm \end{aligned} \\ h_{exp} &= \pm 5 \ cr \end{aligned} \qquad \begin{array}{c|c} \text{Cu} & 2.7 & 86\% -> 95\% \\ \text{SS} & 2.8 & 82\% -> 94\% \end{aligned} \qquad u &= \pm 30 \ cm \end{aligned}$$

Moderator Height and Exposure: Cu

Moderator Height and Exposure: Cu

Moderator Height and Exposure: Take-away

• Exposure:

Full height of the moderator should be exposed

Moderator Height

Increasing height over 30 cm above the target plane give diminishing returns.

Moderator Thickness: Cu vs SS.

Moderator Thickness: Cu vs SS.

Moderator Thickness: Cu vs SS.

Full Experiment: Bubble Detectors

Stainless Steel $T_{mod} = 35 \ cm$

Test Object Differentiation

Test Object Differentiation

Conclusions

- Established SS as a suitable moderator to soften the 14 MeV DT source
- Redesigned and tuned collimator geometry
 - Maximize fraction < 1 MeV
 - Maximize neutron flux
 - Minimize background counts to detector arrays and facility
- Showed differentiation between DU and LEU configurations
 - Single cube of DU vs LEU
 - With additional measurements at multiple orientations, can distinguish between multi-LEU cube configurations
- Future work:
 - Use in conjunction with differential transmission radiography
 - Explore more spoof scenarios with more materials
 - Explore ways to move beyond an experimental test-bed toward a fieldable setup

