

Frequency domain multiplexing of multiple organic scintillator detectors

Mudit Mishra NC State University

PI: Prof. John Mattingly, email: john_mattingly@ncsu.edu Consortium for Verification Technology (CVT)

Introduction

- In this work, we present a technique to combine the anode pulses from multiple organic scintillators into a single digitizer channel.
- Each detector pulse is converted into decaying sinusoidal waveform at a particular characteristic frequency.
- The frequency domain analysis on the ringing pulse is performed to extract the following information about the original anode pulse.
 - time − of − arrival
 - charge collected
- The frequency associated with the waveform reveals the detector from which the pulse originated.

Circuit

The gain, G of the circuit is give by –

$$G = 1 + \frac{Z_{LC}/R_1}{j\left(\frac{\omega}{\omega_{LC}} - \frac{\omega_{LC}}{\omega}\right) + \frac{1}{Q}}$$

$$Z_{LC} = \sqrt{\frac{L}{C}}$$
 , $\omega_{LC} = \frac{1}{\sqrt{LC}}$

- The non inverting circuit produces an output with a phase difference of zero with respect to input.
- The Bode diagram shows the gain is maximum at the frequency of 4.75 MHz with a phase difference of zero.

Analysis

Results

- Charge collected under the anode pulse and its time of arrival were calculated using the first amplitude and phase of the ringing waveform respectively.
- The anode pulses from organic scintillator, generated using a Co - 60 source were used as an input to the circuit.
- A linear relationship between the charge collected under the anode pulse and the first amplitude of the sinusoidal waveform is established.
- A linear relationship is also established between the time of arrival of the anode pulse and phase of the sinusoidal waveform.

 Coincidence measurements were done using Na – 22 source where phase of the ringing waveform was used to calculate time of – arrival of the coincident pulse.

Future work

Another circuit is being designed to ring at different frequency to demonstrate multiplexing of two detector pulses.

Two – sided printed circuit board layout Courtesy – Eagle 7.6.0

- Perform coincidence measurements where phase of the ringing waveform will be used to calculate time – of – arrival of the coincident pulse for both the detector pulses.
- Obtain pulse height spectrum of a radioactive source using the ringing pulse.

