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Introduction and Motivation: 
Organic scintillators serve as valuable neutron detection materials for nuclear nonproliferation, 
treaty verification, international safeguards, and many other areas. Organic scintillator 
materials offer simultaneous detection of fast neutrons and gamma rays and the ability to 
discriminate between them. Recent developments in growth methods for crystalline stilbene 
have produced stilbene crystals with superior neutron-gamma pulse shape discrimination. 

Crystal scintillators experience a directionally-dependent response to heavy charged particles 
(e.g. proton recoils produced by neutron interactions). During my dissertation work at the 
University of California, Berkeley, I performed detailed studies of the directional dependence 
that demonstrated that the effect is complex and varies in magnitude and behavior across 
materials. This effect is an interesting signature of the internal energy transfer processes that 
may unveil new information about poorly characterized physics. 

Conclusion: 
The anisotropic scintillation response in organic crystal scintillators is a significant effect 
that results from directionally-dependent kinetic processes, including preferred 
directions of exciton transport within a crystal. An extensive characterization 
demonstrated that the magnitude and behavior of the effect vary across materials. One 
can visualize the basic physical mechanisms responsible for the effect by considering 
interactive and transport processes of individual excitons. This effect offers a signature 
of the internal energy processes that could be used as a directional detection modality 
or studied further to learn more about poorly characterized physics.

Measure expected light output ෠𝐿 and pulse shape መ𝑆 for 14 MeV proton recoil vs. p recoil 

direction. Quantify effect as 𝐴𝐿 =
𝐿𝑚𝑎𝑥
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, 𝐴𝑆 =
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.
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Stilbene P-Terphenyl Bibenzyl

𝐴෠𝐿 = 1.155 ± 0.006
𝐴 መ𝑆 = 1.798 ± 0.006

Min, Max out of sync
Saddle in sync

All in sync All out of sync

𝐴෠𝐿 = 1.182 ± 0.006
𝐴 መ𝑆 = 1.081 ± 0.001

𝐴෠𝐿 = 1.141 ± 0.003
𝐴 መ𝑆 = 1.070 ± 0.001

𝐴෠𝐿 = 1.161 ± 0.008
𝐴 መ𝑆 = 1.031 ± 0.001
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DT neutron generator measurements

Reframing Scintillators: Considering Individual Excitations
In order to understand why the directional dependence exists, it is helpful to think of 
the light production process on the level of individual excitations. These excitations 
are often considered as particles and called excitons. The following diagrams 
demonstrate several kinetic processes that are important for light production in 
organic scintillator materials:

Impact, Applications, and New Theory
Impact: Degrades energy resolution, widens pulse shape distribution
- May be possible for correct for the effect when proton recoil direction is known
- Control measurement orientation for best PSD, light output
Applications: Use the effect in a directional modality
- Employ as compact directional detector with high efficiency
- Dark matter detection
New theory: Understand poorly characterized physics
- What physical properties dictate the anisotropy?
- How do quenching processes proceed?
- May contribute new understanding to other fields: OLEDs, OPVs
New development: Produce new materials 
- Eliminate or enhance the directional dependence
- Increase light output, improve n-𝛾 PSD performance
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Why is there a directional dependence? Why do the behavior and magnitude of the 
anisotropy vary by material?
• There exist preferred directions of excitation transport.
• Those directions may be the same or different for singlet and triplet excitations.
• The relative difference in transport rate is different across materials.

Initial distribution Distribution after some transport

Characterizing the Directional Dependence of Proton Recoil Events
Measured 14 MeV and 2.5 MeV proton recoil events generated by DT and DD neutron generators
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Significance of New Solution-Grown Stilbene
Pulse shape distribution measured 
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3. Triplet-Triplet Annihilation,
Delayed Fluorescence

1. Fluorescence 
(ns)

ℎ𝜈𝐹

2. 
Phosphorescence 
(𝜇s-ms)

ℎ𝜈𝑃

Anthracene 𝝅 orbital energy levels 

𝑇1 + 𝑇1 → 𝑆1 + 𝑆0

𝑆0 + ℎ𝜈

4. Singlet Ionization 
Quenching
𝑆1 + 𝑆1 → 𝑆∗ + 𝑆0

𝑆0 + ℎ𝜈
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