

PSD Characterization and Optimization of Stilbene Crystals with Silicon Photomultiplier Readout

K. Beyer*, A. Di Fulvio, T. H. Shin, S. A. Pozzi

Department of Nuclear Engineering and Radiological Science, University of Michigan

*beykyle@umich.edu

Consortium for Verification Technology (CVT)

Motivation and Introduction

- Stilbene Crystals, when compared to xylene-based organic scintillators, e.g. EJ309 [1], feature
 - excellent gamma-neutron discrimination
 - good neutron detection efficiency
- Silicon Photomultiplier (SiPM) detectors are
 - compact, single-photon sensitive materials
 - a candidate to replace conventional PMTs
 - Enabling designs for compact radiation detection and measurement devices that would be impossible with bulky, high voltage PMTs, such as handheld imagers
- Goal: report pulse shape discrimination (PSD) performance of the detection assembly, as a function of pulse post-processing parameters, crystal size and SiPM voltage bias.

Methods

- Detector assembly
 - SensL C series 6mmx6mm SiPM
 - Stilbene crystals of various shapes/sizes

Fig. 1 Irradiation setup (left) and SiPM coupled to a 6x6 mm² crystal (right)

Figure of Merit Error Estimation

- Cramer-Rao lower bound [3] can be used to calculate the minimum variance of the estimated σ , i.e. $var(\hat{\sigma})$, as in Eq. 1
- $p(y;\sigma)$ is the probability density function of the signal, parametrized by the standard deviation of the distribution.

$$var(\widehat{\sigma}) = \frac{1}{-E\left(\frac{\partial^2 p(y;\sigma)}{\partial \sigma^2}\right)}$$

Results

Fig: 4 shows greater light collection for smaller crystals.

- Pulse integral distribution for a Cs-137 irradiation
- Counts normalized to 80% of the Compton edge peak
- Length by height for rectangular crystals, length by diameter for cylindrical

Fig: 5 shows PSD sensitivity to tail start time. Scatter plot of tail/total

- The most robust parameters over all settings were selected, and shown in Fig 6.

0.6x0.6 mm² (cyl) 10x10 mm² 15x15 mm² ⁻20x20 mm² ⁻25.4x25.4 mm² (cyl) Fig 4 30V Bias

Fig 6: FOM of 6mmx6mm cylindrical crystal, irradiated with Cf-252, Varying PSD parameters. Legend in Samples = 2 ns

- Tail-start time: 80 ns
- Tail-stop time 800 ns
- Pre-start time 6 ns
- Window 1040 ns
- 6mmx6mm cylindrical crystal

Conclusions and Future Work

- Small crystals (< 3.4 cm³ volume) feature a better light collection compared to larger ones.
- Pulse shape discrimination is especially challenging for light output values less than 0.5 MeVee.
- Parameters which maximize the figure-of-merit, across all bias voltages, in the energy range of interest, are:
 - Pre-start time: 6 ns
 - Tail-stop time: 800 ns
 - Tail-start time: 80 ns

Future Work: evaluate and optimize PSD performance using light guides to couple the 6mmx6mm SiPM to larger area stilbene crystals

Fig 7 (left): 20mm diameter cylinder stilbene crystal, coupled to light guide, coupled to SiPM

[1] M. M. Bourne, S. D. Clarke, N. Adamowicz, S. A. Pozzi, N. Zaitseva, and L. Carman, "Neutron Detection in a High-Gamma Field Using Solution-Grown Stilbene," NIMA, vol. 806, 2015.

"Guide to the Expression of Uncertainty in Measurement JCGM 100:2008, GUM 1995 with minor corrections", 2008 by BIPM IEC IFCC ILAC ISO IUPAC IUPAP OIML.

[3] Kay, M., "Fundamentals of statistical signal processing", Prentice Hall, 1993.

This work was funded in-part by the Consortium for Verification Technology under Department of Energy National Nuclear **Security Administration award number DE-NA0002534**

Light Output (keVee)

