Advanced analytic methods for neutron spectra unfolding and pulse shape discrimination Yoann Altmann^(1,2), Angela Di Fulvio⁽²⁾, Alfred Hero⁽¹⁾, Steve McLaughlin⁽²⁾, Sara Pozzi⁽¹⁾ (1) University of Michigan, Ann Arbor, MI, (2) Heriot-Watt University, Edinburgh, U.K. Contact: Angela Di Fulvio (difulvio@umich.edu), Pls: Prof. Alfred Hero and Prof. Sara Pozzi Consortium for Verification Technology (CVT) ## Motivation and Introduction - Neutron spectrometry without time-of-flight can be extremely useful in safeguards and nonproliferation applications, e.g. neutron imaging for material accountancy and verification (Fig. 1), to discriminate between fissile material and other neutron emitting sources. - Organic scintillators are intrinsically able to reconstruct the incident neutron spectrum, by unfolding the measured pulse-height distribution with the known response of the scintillator to monoenergetic neutrons. - The use of organic scintillators is well established for the measurement of neutron spectra above several hundred keV. - Pulse-height spectrum results from energy deposited both by proton recoils, produced by neutron interactions with H-1 nuclei in the scintillator, and electron recoils, generated by gamma-rays via Compton scattering. - Improved algorithms are needed to maximize gammaneutron discrimination capability and increase fidelity of neutron spectrometry and thus decrease the neutron energy detection threshold. #### More efficient data representation: - 2 or 3 dimensions sufficient (out of more than 100) - Powerful to classify millions of pulses ## Two methods tested and compared using experimental data [2] Fig. 2 Neutron count rate classified using the CI and PCA methods. moved 2.5 cm to 175 cm SDD Fig 3. Posterior probability of each pulse to result from a neutron detection. ## Pulse shape discrimination #### GAMMA-NEUTRON DISCRIMINATION ## Neutron spectra unfolding #### UNFOLDING z_{0i} light output spectrum $z_{0i} + e_i = \tilde{a} R_{ii} F_i$ (i = 1...M)M is the number of detection channels $R_i(E)$ is the detector response $\Phi(E)$ Neutron spectrum flux cm⁻² # Approach B: ### [1] "Technology R&D for Arms Control", Office of Nonproliferation Research and Engineering, Spring 2001. - [2] A. C. Kaplan, et al., "EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold," Nucl. Instr. Meth. A, 729, (2013) - [3] Reginatto, M. "Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED," Nucl. Instr. Meth. A, 476, 242 (2002). [4] Harmany, Z. T. et al., "This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction Algorithms—Theory and Practice", IEEE Trans. Image Process., 2012 This work was funded in-part by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534 Fig. 4: Cf-252 neutron energy spectra unfolded by SPIRAL [1] (top) Fig. 5. Unfolded neutron energy spectrum from Cf-252 detected with an EJ-309 liquid scintillator; the Watt spectrum from Mannhart is shown for reference. ## Conclusions and Future Work ## PCA - Principal component analysis does not require parameter optimization to perform the classification. - Domain transformation mitigates the effect of temporal delays. Unfolding - unfolding algorithm to be used for neutron energy reconstruction using a single liquid scintillator (ill-conditioned response matrix). - Trend of the reconstructed neutron spectrum compares well with analytic spectrum function \rightarrow uncertainty compensation needed. Incorporate the pulse shape discrimination to the unfolding algorithm to improve fidelity at low energies.