Motivation

* Nuclear fuel cycles release emissions into the
surrounding environment

* Heat, water vapor, CO2, SO2, Nox

 Declared and undeclared nuclear activities have
different emission patterns

e Potential diversions could be:
e Excessive emissions in the environment
* Unusual chemicals detected by sensors

* Modeling the environment during declared
activities makes it possible to detect unusual activity
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System Model

« Environment is modeled as a spatial-temporal
random field, governed by actual physical equations

» Sensors collect observations, these are noisy
discrete data points generated by the environment
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Estimating the Environment

 When f() is very complicated, can’t calculate Vf ()
e So can’t use (extended) Kalman filter

* Must estimate the Kalman gain matrix K
another way

 Ensemble Kalman filter [1] creates an ensemble of
X,’s and uses this to calculate an estimator for K

« Computationally expensive to create large ensemble
» So when x, is large, the estimator K is not very good

« Many methods apply a taper matrix (using
additional knowledge) to sample cov. in K

« Our method (PEnKF) learns a better K

* The penalized ensemble Kalman filter [2] uses ¢,
penalty to promote sparsity in inverse sample cov.

 Learns the interactions between variables

» Is proven to require a smaller ensemble X than
standard EnKF
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Cloud Convection System

« A system based on the modified shallow water
equations of [3]

* Models cloud convection with fluid dynamics

» 3 Types of state variables: fluid height, rain
content, wind speed

* 300 locations for each type of state variable
» (Observations every 5 seconds

» Always observe rain content

* Only observe wind speed where it is raining

» Never observe fluid height
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 RMSE: Averaged over all 300 locations of each type

 Both NAIVE-LEnKPF [4] and TAPER-EnKF use a
prior information about the true system

« PEnKF does equally well without this information

« For rain, it does statistically better
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Diversion Detection

* Train the PEnKF for period of time without
diversions (establish a baseline)

* Then for every new time point t,

1) Calculate the threshold for false positive level a
at every location i

+ Cl(a) =1 X7, X/ + o(@) /Pii
2) Test yt > C'(a)
« If true, declare an diversion at location 1

» Bypass the Kalman update at location i

Simulating Diversions

 Generate diversions as observations of rain content
at locations where there shouldn’t be (no clouds)

« Can appear anytime after 3 hours (t = 60)
« Last between 25 - 50 seconds

» Have values between 0.1 - 0.15

0.08 -

0.06 —

=75

0.04 —

0.02 =

0.00 -

0.09 -

0.06 —

=76

0.03 - '

0.00 —

1 1 | 1
0 100 200 300
Location

At false positive level a = 0.001. the threshold:
» Correctly identifies the diversion at t = 75
« Has 1 false positive (out of 299) at this t

Discussion

* Propose the PEnKF to estimate a large, complicated
environment by incorporating data from many sources

* Propose a simple threshold to test for diversions
and prevent them from corrupting the estimation

* Working on tighter test for more accurate detection
with respect to a given false positive rate
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