

Penalized Ensemble Kalman Filters for High Dimensional Non-linear Systems

Elizabeth Hou¹, Earl Lawrence², Alfred O. Hero¹

¹University of Michigan, Ann Arbor and ²Los Alamos National Laboratory

Alfred O. Hero, hero@eecs.umich.edu
Consortium for Verification Technology (CVT)

Motivation

- Nuclear fuel cycles release emissions into the surrounding environment
 - Heat, water vapor, CO2, SO2, Nox
- Declared and undeclared nuclear activities have different emission patterns
- Potential diversions could be:
 - Excessive emissions in the environment
 - Unusual chemicals detected by sensors
- Modeling the environment during declared activities makes it possible to detect unusual activity

System Model

- Environment is modeled as a spatial-temporal random field, governed by actual physical equations
- Sensors collect observations, these are noisy discrete data points generated by the environment

Estimating the Environment

- When f() is very complicated, can't calculate $\nabla f()$
 - So can't use (extended) Kalman filter
 - Must estimate the Kalman gain matrix **K** another way
- Ensemble Kalman filter [1] creates an ensemble of \mathbf{x}_t 's and uses this to calculate an estimator for \mathbf{K}
- Computationally expensive to create large ensemble
- So when \mathbf{x}_t is large, the estimator $\hat{\mathbf{K}}$ is not very good
 - Many methods apply a taper matrix (using additional knowledge) to sample cov. in $\hat{\mathbf{K}}$
 - Our method (PEnKF) *learns* a better $\hat{\mathbf{K}}$
- The penalized ensemble Kalman filter [2] uses ℓ_1 penalty to promote sparsity in inverse sample cov.
 - Learns the interactions between variables
 - Is proven to require a smaller ensemble $\widehat{\boldsymbol{X}}$ than standard EnKF

Cloud Convection System

- A system based on the modified shallow water equations of [3]
 - Models cloud convection with fluid dynamics
 - 3 Types of state variables: fluid height, rain content, wind speed
 - 300 locations for each type of state variable
- Observations every 5 seconds
 - Always observe rain content
 - Only observe wind speed where it is raining
 - Never observe fluid height

Root Mean Squared Error

- RMSE: Averaged over all 300 locations of each type
- Both NAIVE-LEnKPF [4] and TAPER-EnKF use *a prior* information about the true system
- PEnKF does equally well without this information
 - For rain, it does statistically better

Diversion Detection

- Train the PEnKF for period of time without diversions (establish a baseline)
- Then for every new time point *t*,
 - 1) Calculate the threshold for false positive level α at every location i

•
$$C^{i}(\alpha) = \frac{1}{n} \sum_{j=1}^{n} \widehat{X}_{t}^{ij} + \Phi(\alpha) \sqrt{\widetilde{P}_{ii}}$$

- 2) Test $y_t^i > C^i(\alpha)$
 - If true, declare an diversion at location *i*
 - Bypass the Kalman update at location *i*

Simulating Diversions

- Generate diversions as observations of rain content at locations where there shouldn't be (no clouds)
 - Can appear anytime after 3 hours (t = 60)
 - Last between 25 50 seconds
 - Have values between 0.1 0.15

- At false positive level $\alpha = 0.001$. the threshold:
 - Correctly identifies the diversion at t = 75
 - Has 1 false positive (out of 299) at this t

Discussion

- Propose the PEnKF to estimate a large, complicated environment by incorporating data from many sources
- Propose a simple threshold to test for diversions and prevent them from corrupting the estimation
- Working on tighter test for more accurate detection with respect to a given false positive rate

References

- [1] Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics. *Journal of Geophysical Research: Oceans*, 99 (C5), 10 143–10 162.
- [2] Hou, E., E. Lawrence, and A. O. Hero, 2016: Penalized Ensemble Kalman Filters for High Dimensional Non-linear Systems. ArXiv e-prints, 1610.00195.
- [3] Würsch, M., and G. C. Craig, 2014: A simple dynamical model of cumulus convection for data assimilation research. *Meteorologische Zeitschrift*, 23 (5), 483–490.
- [4] Robert, S., and H. R. Künsch, 2016: Local Ensemble Kalman Particle Filters for efficient data assimilation. ArXiv e-prints, 1605.05476.

This work was partially supported by the Consortium for Verification
Technology under Department of Energy National Nuclear Security
Administration award number DE-NA0002534 and by the Laboratory
Directed Research and Development program at Los Alamos
National Laboratory under project 20150033DR, SHIELDS: Space
Hazards Induced near Earth by Large Dynamic Storms - Understanding, Modeling, and Predicting.

