Recent progress on physical cryptographic verification of nuclear warheads

<u>Jayson Vavrek</u>, Areg Danagoulian, Eleanor Immerman, R Scott Kemp, Richard Lanza, Ruaridh Macdonald, Bari Osmanov, Brian Henderson

Nuclear warhead verification is both a political and technical challenge

- Global warhead stockpiles (primarily US and Russia) still total over 15 000.
- Future disarmament efforts will likely require *verification* of compliance.

The disarmament verification problem:

How can a warhead be reliably identified as authentic without revealing classified information?

MIT Physical Cryptographic Verification Protocol

Outline

- 1. The protocol
- 2. Summary of recent results
- 3. Experimental run at HVRL
- 4. Validation of G4NRF
- 5. Future work

Nuclear resonance fluorescence (NRF) is used to make isotopespecific measurements

The verification protocol avoids direct measurements of the warhead, protecting sensitive design information

Compare NRF signals: (Weapon A) x(Foil) vs (Weapon B) x(Foil)

Encryption by a physics process, not by software

We first proved the physical cryptographic concept using Geant4

Signal photons: $\vartheta \le \pi/4$ energy spectrum

Outline

1. The protocol

2. Summary of recent results

3. Experimental run at HVRL

4. Validation of G4NRF

5. Future work

Canonical hoax scenarios are detectable in tens of minutes

Outline

- 1. The protocol
- 2. Summary of recent results
- 3. Experimental run at HVRL
- 4. Validation of G4NRF
- 5. Future work

We measured NRF spectra for U-238 and Al-27, and established additional diagnostics

The three major U-238 resonances (and branches) are clearly observed

The Al-27 line at 2.212 MeV is useful for normalization

Using a simplified model, we can predict the detected NRF count rate

The model gives good results for relative (normalized) measurements

theory:
$$\left(\frac{n_{2212}}{n_{2209}}\right)_{
m num} = 4.70.$$

experiment:
$$\left(\frac{n_{2212}}{n_{2209}} \right)_{
m exp} = 5.5 \pm 0.8$$

preliminary

Outline

- 1. The protocol
- 2. Summary of recent results
- 3. Experimental run at HVRL
- 4. Validation of G4NRF
- 5. Future work

Previous results from PNNL showed agreement to 20%

Preliminary results with a simple flux show closer to 5% agreement with no target...

...and similar results for thin targets...

...but thick target analytical models may need a notch refill correction

Outline

1. The protocol

2. Summary of recent results

3. Experimental run at HVRL

4. Validation of G4NRF

5. Future work

Can we make absolute count rate predictions for an *experiment*, not just a simulation?

Can we quantify the sensitivity of the experiment?

- Cross section evaluations
- Temperature-dependence of cross sections
- Bremsstrahlung beam configurations
- Misalignments
- Small diversions of SNM
- More elaborate hoaxes

Physical cryptographic verification is a promising technique, but there are still technical challenges to resolve

Questions?

Backup: analytical model

$$\frac{d^3n}{dE\,d\Omega\,dx} = \phi_t(E)b\,\mu_{\rm NRF}(E)\frac{W(\theta)}{4\pi}\exp\left\{-x\left[\mu_{\rm NRF}(E) + \mu_{\rm nr}(E) + \frac{\mu_{\rm nr}(E')}{\cos\theta}\right]\right\}\epsilon_{\rm int}(E')P_f(E')$$

Backup: temperature-dependence

