Disarmament Verification

Areg Danagoulian MIT

New START treaty, 2011 – Russia & USA

- Reduce deployed warheads to 1550 warheads each -- ~3x reduction
- How do treaty partners verify that the other side is dismantling actual warheads and not fakes? <u>They don't</u>.
- Verification: **delivery vehicles** easier to verify.

- Problems: large leftover of non-deployed warheads
 - theft \rightarrow nuclear terrorism, nuclear proliferation
 - rapid rearmament in times of political crisis

→ Authenticate warheads, without revealing classified information!

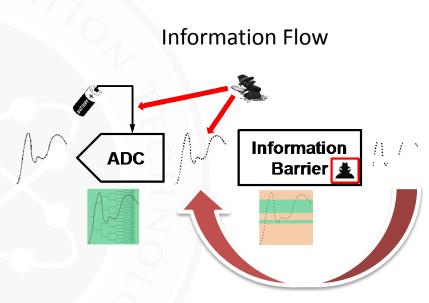
Overall View of Thrust Area

- Treaty *verification* is not the same as weapon *detection*
- The goal of verification is to confirm that an object presented as "X" is "X".
 - Negotiate protocols to establish acceptable level for "confirmation."
- Critical Issues:
 - clear all real warheads (completeness)
 - detect all fakes/hoaxes (soundness)
 - reveal no classified information ("zero knowledge")

Thrust Area V Subprograms

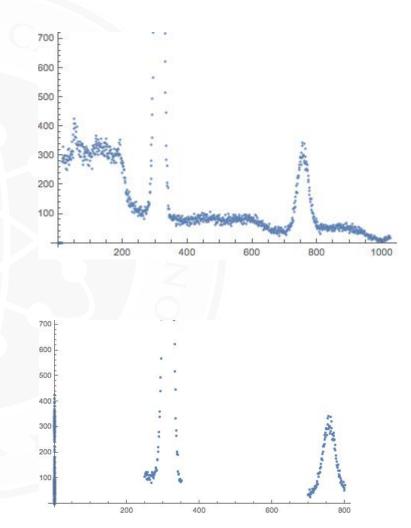
- Verification Using Inherently Trustworthy Instruments (Univ. of Michigan)
 - SAR ADC's with non-uniform bin resolution
 - Lead: David Wehe
 - Student: Fred Buhler
 - Collaborating with: LLNL
- Information Barriers with Enhanced Automated Isotope Identification (UIUC)
 - Lead: Clair Sullivan
 - Student: Mara Watson,
 - Collaborating with: DAF
- Zero Knowledge template verification (Princeton + Yale)
 - − neutron radiography \rightarrow comparison to a template
 - Leads: Alex Glaser, Francesco d'Errico, Robert Goldston.
 - Student: Sebastian Philippe
 - Collaborating with: PPPL, DAF
- Physical Cryptographic Verification of Nuclear Warheads (MIT)
 - transmission NRF to produce a physical hash of a nuclear warhead \rightarrow comparison to a template
 - Leads: Richard Lanza, Areg Danagoulian, Scott Kemp
 - Students: Jayson Vavrek, Ruaridh Macdonald, Ellie Immerman, Bobby Nelson, Jake Hecla
 - Collaborating with: PNNL

Verification Using Inherently Trustworthy Instruments


David Wehe University of Michigan

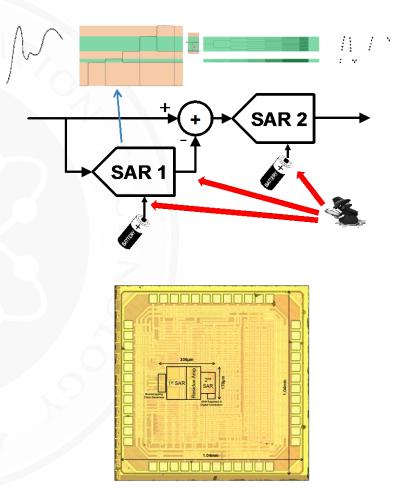
Conceptual

- For treaty verification, both parties must agree on a measurement protocol that provides adequate assurance that treaty obligations are met without yielding sensitive information.
- Existing approaches use templates or information barriers applied post-measurement, and are suspicious because sensitive information is acquired before the barrier.
- E.g.: FPGAs hackable, power changes detectable by untrusted observer.
- This work investigates electronic measurement techniques in which precise, spoof-proof, *digital* information can be acquired only where mutually acceptable.



Successive Approximation

- Successive Approximation ADC. Fast, high resolution.
- Pulse height is measured to a resolution of 2⁻ⁿ after nth step.
- n+1 step only taken if <u>could</u> fit into a predefined range
- High resolution in ROI, no/low information away from allowable ranges.
- Significant gain in throughput
- No measurement of irrelevant information



New two-stage SAR ADC archetecture

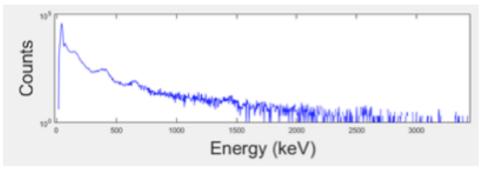
- First stage only detects if input is within an agreeed upon spectrum
- Error amlifier limited to desired window
- Second stage digitizes the error signal

<u>Untrusted Observer Immunity</u>: Each stage is physically (capacitor size) and electrically (saturation) limited to the agreed upon spectrum

Side Attack Immunity: SAR decision tree removes power supply correlation with ADC code

Thrust Area V subprograms

- Verification Using Inherently Trustworthy Instruments (Univ. of Michigan)
 - SAR ADC's with non-uniform bin resolution
 - Lead: David Webe
 - Student: Fred Buhler
 - Collaborating with LLNL
- Information Barriers with Enhanced Automated Isotope Identification (UIUC)
 - Lead: Clair Sullivan
 - Student: Mara Watson,
 - Collaborating with: DAF
- Zero Knowledge template verification (Princeton + Yale)
 - − neutron radiography \rightarrow comparison to a template
 - Leads: Alex Glaser, Francesco d'Errico, Robert Goldston.
 - Student: Sebastian Philippe
 - Collaborating with: PPPL, DAF
- Physical Cryptographic Verification of Nuclear Warheads (MIT)
 - transmission NRF to produce a physical hash of a nuclear warhead \rightarrow comparison to a template
 - Leads: Richard Lanza, Areg Danagoulian, Scott Kemp
 - Students: Jayson Vavrek, Ruaridh Macdonald, Ellie Immerman, Amelia Turner, Jake Hecla
 - Collaborating with: PNNL

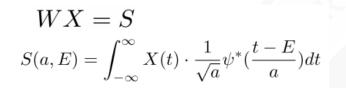


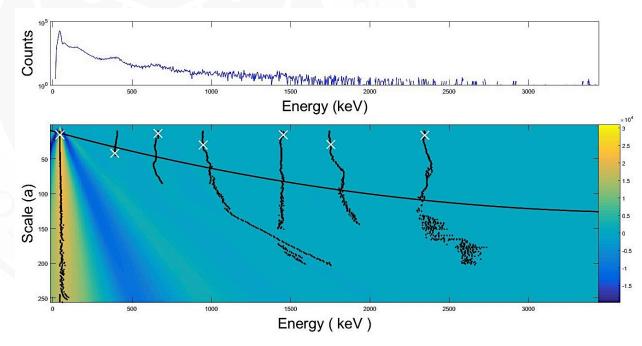
Information Barriers with Enhanced Automated Isotope Identification (UIUC)

- Given allowable peaks to be measured:
 - Enhanced automated isotope identification algorithms for improved information security
 - Accurate identification with different detectors
- Results:

Identifications with > 50% posterior probability: Pu-239: 84.7% Am-241: 84.1% Pu-239 + Am-241: 57.7%

Spectrum of BeRP ball + 4 cm polyethylene + 1.27 cm Pb, collected with 2x2 in. NaI in 2 minutes




Wavelet Analysis and Derivation of Peak Areas

Step 1: Calculate wavelet transform

Step 2: Determine WTMM lines, filter, and find maxima along lines

- S: = CWT coefficient matrix
- W: = Wavelet transform tensor
- X: = Spectrum vector
- E: = Wavelet centroid parameter
- a: = Wavelet scale parameter
- B: = Wavelet basis matrix
- B_1 : = Optimal submatrix of B
- k: = Fit vector, wavelet representation of X
- C_S : = Signal covariance
- C_k : = Fit covariance

Peak centroids, areas, uncertainties provided to Bayesian ID code

	Courso	Chielding		Distance	
	Source	Shielding			ID Se-75,
	Se-75		0.54 mCi	50	Eu-152
Sample identifications made	Eu152		10 uCi	30	Eu-152
from DAF and LANL			10 uCi /		
 Main All spectra collected with NaI, 60 	Eu152 / Ba-133		0.4 uCi	10/2	Eu-152
second integration time	U-233		1 g	100	U233, Th-232
Red indicates incorrect	HEU				
identification	(93.2% U-235)	1.2 cm Fe	13 kg	120	U-235
	WGPu				Pu-239,
	(BeRP Ball)				Am-241,
	(93.7% Pu-239)		4.5 kg	120	I-125
	WGPu (BeRP Ball)				Pu-239,
REFIFICATION	(93.7% Pu-239)	1.2 cm Pb	4.5 kg	120	Am-241

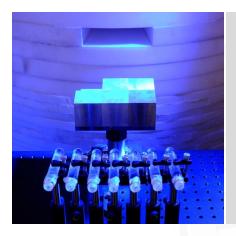
Thrust Area V subprograms

- Verification Using Inherently Trustworthy Instruments (Univ. of Michigan)
 - SAR ADC's with non-uniform bin resolution
 - Lead: David Wehe
 - Student: Fred Buhler
 - Collaborating with: LLNL
- Information Barriers with Enhanced Automated Isotope Identification (UIUC)
 - Lead: Clair Sullivan
 - Student: Mara Watson,
 - Collaborating with: DAF
- Zero Knowledge template verification (Princeton + Yale)
 - neutron radiography \rightarrow comparison to a template
 - Leads: Alex Glaser, Francesco d'Errico, Robert Goldston.
 - Student: Sebastian Philippe
 - Collaborating with: PPPL, DAF
- Physical Cryptographic Verification of Nuclear Warheads (MIT)
 - transmission NRF to produce a physical hash of a nuclear warhead \rightarrow comparison to a template
 - Leads: Richard Lanza, Areg Danagoulian, Scott Kemp
 - Students: Jayson Vavrek, Ruaridh Macdonald, Ellie Immerman, Amelia Turner, Jake Hecla
 - Collaborating with: PNNL

Zero Knowledge Warhead Verification with Neutron Transmission and Emission Measurements

Physical zero-knowledge object-comparison system at PPPL (*Nature Communications*, 2016): Expansion and demonstration of the Glaser, Barak, Goldston (GBG) Protocol (*Nature*, 2014)

- Use active neutron interrogation in a Zero Knowledge configuration:
 - transmission radiographs are recorded on detectors preloaded with the complement radiograph (including Poisson noise) of a reference item.
 - If the item is valid (identical to the reference), the final radiograph is identical to the expected exposure if no object had been present.
- Proof-of-concept system demonstrates fast neutron differential radiography can confirm that two objects have identical neutron opacity without revealing geometries/composition.



ZERO-KNOWLEDGE WARHEAD VERIFICATION HIGHLIGHTS OF EXPERIMENTS

14-MEV OBJECT-COMPARISON SYSTEM @PPPL

- 1st demonstration of a physical zero-knowledge
 proof
- Different configurations of 2' ' metal cubes
- Results show that when objects are identical, inspectors do not learn geometry or composition

ACTIVE INTERROGATION OF HEU @ DAF

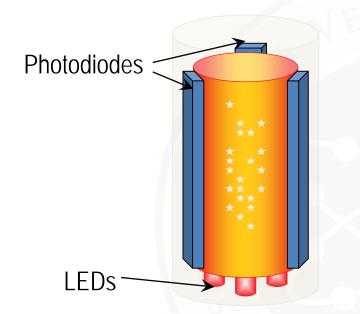
- Transmission and emission measurements with different types of bubble detectors
- Two configurations of the Rocky Flats HEU shells
- Different sources with ~300-keV (AmLi), 2.5-MeV (DD) and 14-MeV (DT) neutrons

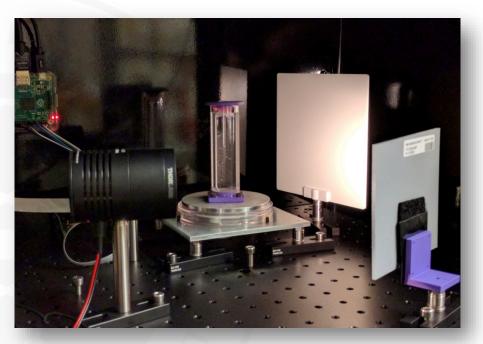
ZERO-KNOWLEDGE WARHEAD VERIFICATION DETECTOR DEVELOPMENT (YALE)

TRANSMISSION

- Capable of storing > 1,000 counts
 - Preloads indistinguishable from measurement counts
- Insensitive to gamma radiation
- Sensitive to neutrons above selected thresholds
 - Some thresholds of interest: 3 and 10 MeV

EMISSION (spontaneous and driven)


- Capable of storing thousands of counts
 - No imaging at present
- Insensitive to gamma radiation
- Sensitive mainly to fission neutrons
 - Energy threshold ~500 keV or above source


ZERO-KNOWLEDGE WARHEAD VERIFICATION

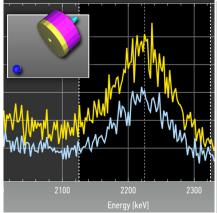
NEW READING TECHNIQUES (YALE + PRINCETON)

OPTOELECTRONIC READOUT (YALE)

- A beam of infra-red light crosses the active area of the detector and is deflected by evaporated bubbles.
- Photodiodes affixed along the detector length selectively detect the scattered light component post-irradiation.

360-OPTICAL TOMOGRAPH (PU)

- Takes 360-degrees movies of detectors.
- Use PU open-source bubble counting software. (in development).
- To be upgraded with HeNe laser scattering for data commitment experiments.



OPEN SOURCE INFORMATION BARRIER PASSIVE GAMMA AND NEUTRON

INFORMATION BARRIER EXPERIMENTAL (IBX)

- Open source software, towards open hardware
- Encourage others to improve or defeat IBX
- Successfully tested at DAF

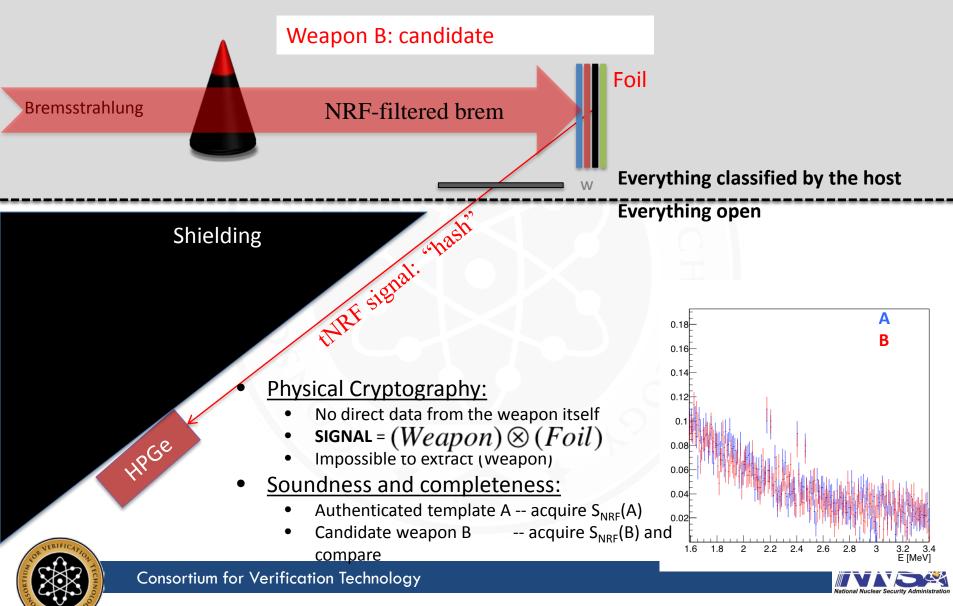
MULTI-CRITERIA-TEMPLATE APPROACH

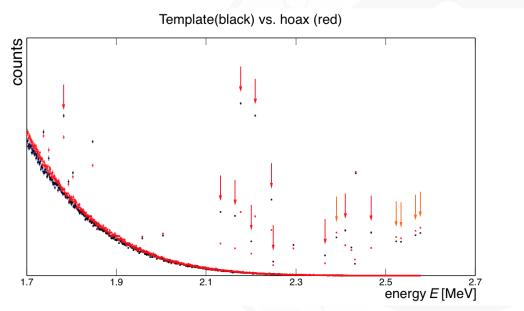
- Compares gamma spectrum and count rate
- Compares neutrons indirectly through 2223 keV gammas from polyethylene \rightarrow sensible to mass
- Implemented in IBX

M. Göttsche, J. Schirm, and A. Glaser. "Low-resolution Gamma-ray Spectrometry for an Information Barrier Based on a Multi-Criteria Template-Matching Approach." *Nuclear Instruments and Methods in Physics Research Section A* (2016).

Multi-Criteria Template-Matching Approach." Nuclear Instruments and Methods in Physics Research Section A (20) Consortium for Verification Technology

Thrust Area V subprograms


- Verification Using Inherently Trustworthy Instruments (Univ. of Michigan)
 - SAR ADC's with non-uniform bin resolution
 - Lead: David Wehe
 - Student: Fred Buhler
 - Collaborating with: LLNL
- Information Barriers with Enhanced Automated Isotope Identification (UIUC)
 - Lead: Clair Sullivan
 - Student: Mara Watson,
 - Collaborating with: DAF
- Zero Knowledge template verification (Princeton + Yale)
 - neutron radiography \rightarrow comparison to a template
 - Leads: Alex Glaser, Francesco d'Errico, Robert Goldston.
 - Student: Sebastian Philippe
 - Collaborating with: PPPL, DAF
- Physical Cryptographic Verification of Nuclear Warheads (MIT)
 - transmission NRF to produce a physical hash of a nuclear warhead \rightarrow comparison to a template
 - Leads: Areg Danagoulian, Scott Kemp, Richard Lanza
 - Postdoc: Brian Henderson
 - Students: Jayson Vavrek, Ruaridh Macdonald, Bobby Nelson, Jake Hecla
 - Collaborating with: PNNL



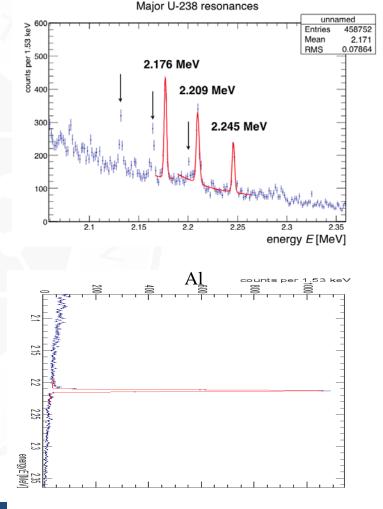
NRF Weapon authentication Concept

Verification Concept with transmission NRF

Geant4 Monte Carlo feasibility studies: template vs. various hoaxes Example: WGP \rightarrow DU replacement hoax

Hoax Scenario	Detection <i>n</i> > 5σ ?	
Template vs. Authentic	<u> </u>	
Template vs. WgPu $\rightarrow {}^{238}$ U	yes	
Template vs. WgPu \rightarrow FgPu	yes	
Template vs. Geometric	no	
Hoax oriented to be undetectable	(by design)	
Template vs. Geometric Hoax after 10° rotation	yes	

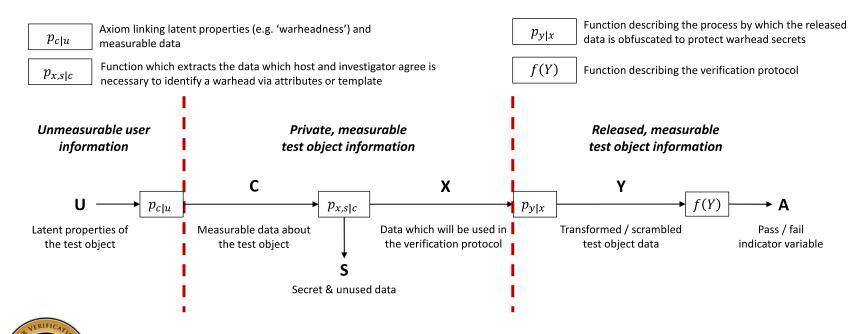
- \rightarrow can catch most hoaxes within minutes
- R.S. Kemp, A. Danagoulian, R.R. Macdonald, J.R. Vavrek, "Physical Cryptographic Verification of Nuclear Warheads," Proceedings of the National Academy of Sciences, vol. 113 no. 31 (2016)



Verification Concept with transmission NRF

- Preliminary results:
 - 238U observed all the primary and secondary resonances
 - Al acquired data for normalization to 27Al's known cross section

- Students and postdocs
 - Jayson Vavrek
 - Ruaridh Macdonald
 - Dr. Brian Henderson (Stanton postdoctoral fellow)
- Collaboration with Ken Jarman, PNNL, on the information theory problem

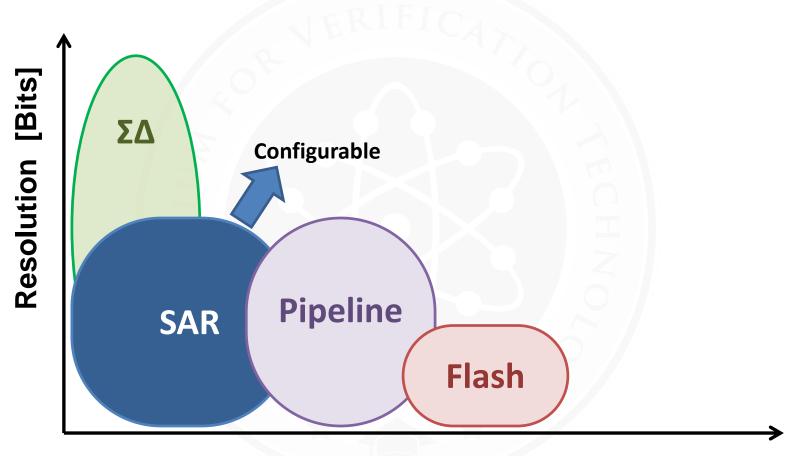


General framework for comparing warhead verification protocols

- Quantify how each step of the protocol effects completeness/soundness/secrecy
- Methods developed from techniques in problems of data privacy

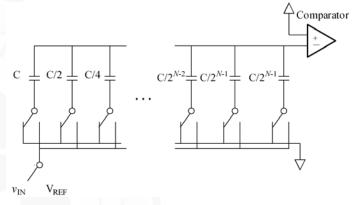
Conclusion

- Solid progress on all projects:
 - experimental proof of concept demonstration of neutron radiography verification protocol (Princeton)
 - optimized neutron bubble detectors for Zero Knowledge neutron radiography (Yale)
 - completed feasibility simulations of the Nuclear Resonance
 Fluorescence (NRF) protocol, taking experimental data (MIT)
 - analyzed data from Device Assembly Facility (DAF) for spectral algorithm development (Illinois)
 - Developing a new, non-uniform ADC concept for gamma spectroscopy (UM)

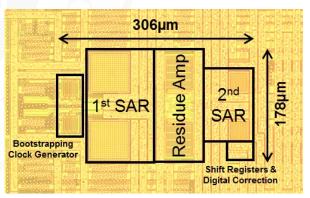

BACKUP

Understanding the problem Fundamental Analog to Digital Converters (ADCs)

Bandwidth [Hz]



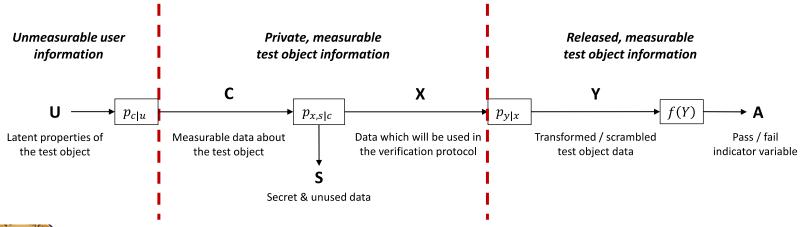
Consortium for Verification Technology



Moving Forward

- Exploits existing R&D for consumer appliances.
- State of the art, published in ISSCC 2015
- SAR ADC with 50 Msps, 11.5 ENOB, 1mW, in CMOS
- 2-stage ADCs are common approach.
- Newly proposed architecture implementable with modifications to residue amp and 1st SAR capacitor DAC
- Modify the current design to fabricate and test a candidate treaty-acceptable inspection system
- HPGe measurement system assembled.
- Interfaces with national lab, industrial partners during design phase.

Charge Redistribution Successive Approximation ADC


Silicon Implementation

We are developing a general framework for comparing warhead verification approaches

- Protocol steps are described by mathematical functions
 - · All one-to-one / many-to-one relationships are made explicit
- Various measures of mutual information are used to quantify how much information about the test object / warhead is passed on at each protocol step
 - This quantifies the information the inspector receives, i.e. the completeness and soundness
 - The warhead owner can calculate the protocol secrecy using the mutual information between the measured data and the warhead design → this is agnostic to inference method

MINIMALLY-INTRUSIVE VERIFICATION NUMERICAL LIMITS ON WARHEADS WITH "BUDDY TAG"

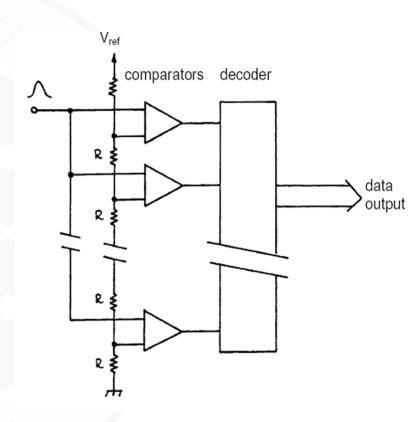
WARHEAD COUNTING

- The challenge: establish a baseline count of warheads and enforce a ban on un-tagged items in a variety of operational environments.
- Numerical counts of items must be trustable and the information security concerns of inspected parties must be respected.

BUDDY TAG CONCEPT

- Buddy tag acts as a companion token, proving ownership of a treaty-accountable item while remaining physically detached from the item itself.
- Declarations are verified by short notice inspections which confirm that all items are associated with a companion tag.

REFERENCE COURTESY of Jose Lopez http://www.defenseimagery.mil (T), Tamara Patton (B)



Flash ADC as example

- design with variable width comparators by adjusting the resistive ladders at the chip level.
- do this in CMOS technology to be cost effective.
- Key idea is to get superb energy resolution in regions of interest while blocking design information from scrutiny.
- Snag: Available flash ADCs do not have sufficient bit resolution. Need 10³-10⁴ matched comparators.

