

Defense Nuclear Nonproliferation Research & Development

Consortium for Verification Technology 2016 Workshop

LBNL Research Highlights LBNL POC to CVT: John Valentine

Assessing impact of monoenergetic photon sources on nonproliferation applications

(lead: INL)

(lead: PNNL)

(lead: LBNL,UM)

LBNL PI: Cameron Geddes CVT Student: Cameron Miller, UM

- Goals
 - Identify a broad range of applications where Monoenergetic Photon Sources (MPS) may have a high impact and prioritize.
 - Assess application requirements (system capabilities and CONOPS constraints), current capabilities, and gaps.
 - Derive photon source requirements (e.g., energy, energy spread, divergence, intensity)
- Applications selected for detailed modeling/ assessment:
 - Screening and interdiction cargo containers, trucks (lead: LLNL)
 - Detection of hidden SNM single-sided inspection
 - Warhead/dismantlement verification
 - Related: tomography for Stockpile Stewardship
 - Spent nuclear fuel dry-storage cask verification

Safeguards dry-storage cask verification Large, shielded cask must be penetrated

- Re-verification of cask content (missing fuel bundles) by MPS transmission measurements
 - Scattering and attenuation severe
 - Pencil beam reduces scatter contribution
 - Fuel background mitigated by gating detector with MPS
 - Infrequent need long measurement times acceptable

Dry-storage cask designs vary: thick steel casks, steel storage canister in concrete overpack or in storage module, large and small fuel bundles (assemblies)

- Longitudinal transmission scan can verify assembly occupancy
 - Short measurement time per spot
 - At $3x10^8$ photons/pulse, 1 kHz, 10^{-8} transmission \rightarrow 3000 photons/s
 - Missing single pin detectable with narrow divergence beam (3.5 mrad)

Safeguards dry cask verification ENERGY MPS enables transverse transmission scan

- Transmission calculated analytically
 - Check against MCNP simulations shows good agreement
 - Several scans angles and cask types evaluated
- Missing assemblies can be detected:
 - ~10x higher transmission
 - Transmission > 10⁻¹² if assembly missing
 - At 10⁻¹² transmission, 3x10⁸ photons/pulse, 10 kHz → 3 photons/s
 - Acceptable measurement times

National Nuclear Security Administration Defense Nuclear Nonproliferation

- MPS with narrow energy and angular spreads, and high rep rate will provide strong benefits for assessed applications
 - Quantitative simulations detail source needs
 - Simulations are being finalized and reported
- Selectable energy (1 15 MeV) at moderate 10-50% energy spread
 - Lower radiography dose, higher materials contrast
 - High photofission yield without interfering activation
- Energy spread ≤ 2% enables NRF in treaty verification, cargo screening
 - $-\Delta E\gamma \sim <0.1$ would enable nuclear materials assay (safeguards)
- Narrow 'pencil' beam (~mrad divergence) a strong benefit:
 - Scatter rejection in radiography, higher contrast & lower doses
 - Transmission measurements on massive objects, e.g. dry-storage casks
 - Pixel-by-pixel dose adaptation in radiography
 - High flux on target for strong photofission signature
- Flux range 10⁹-10¹² photons/sec, rep rate range kHz to 10s of kHz
- Additional signatures (e.g. backscatter) identified, could increase impact

- Localization of shielding volume essential for demonstrating absence of SNM in single-sided inspection scenarios
 - No detectable fission signature is not sufficient
 - Backscatter imaging appears workable with pulsed MPS
- MPS-enabled fissile-fertile discrimination techniques
 - Polarized photofission: specific, and requires less stringent MPS energy spread than NRF
- Low-Z material identification for contraband/explosive detection:
 - NRF or photoneutron techniques
- 3D resolution of objects within complex structures (e.g. cargo)
 - Voxelization & backscatter applicable MPS reduces dose
- High resolution tomography
 - Enabled by MPS with micron-scale photon emission spot size
 - Potential for improved imaging of warheads for stockpile stewardship and intrinsic unique identification for treaty verification

