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Introduction
• Need technological advances for 

the verification and monitoring of 
special nuclear material (SNM)

• Neutron multiplicity counting 
(NMC) used for non-destructive 
assay

• Traditional NMC systems utilize 
capture-based thermal neutron 
detectors
– Typically a well-type geometry
– Relies heavily on 3He-based 

detectors/systems
– Increasing cost of 3He gas

• Investigate 3He alternatives

Canberra© JCC-13 
Coincidence Counter

3He tubes with moderator

2

Design schematic of a typical 
multiplicity counter1

REF [1]
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UM-INL Collaboration: Organic Scintillators
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UM-INL Collaboration: Fast Neutron Multiplicity 
Counters
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Design concepts in MCNPX-PoliMi
(2012)

Passive measurements: 4 EJ-309 
(2012)

Passive measurements: 16 EJ-309 
(2013)

Passive measurements: 8 EJ-309 and 8 Stilbene (2015) 

INL (2012) ISPRA, Italy (2013)

INL (2015) INL (2016)

Active measurements: 8 EJ-309 and 8 Stilbene (2016) 

REF [2], [3], [4]
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1) Much faster timing properties 
relative to thermal systems            
 improved timing resolution

2) No moderating material 
required 
 short die-away times

3) Portion of initial neutron 
energy information retained                      
 spectrum unfolding capabilities

4) Low rate of accidental 
correlated counts                                               
 lower uncertainty

5

Advantages of Fast Neutron Multiplicity Counters

REF [2]
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UM-INL Collaboration: Passive Measurements 
(2015)
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Number of Plates 3 5 7 9 13 15
Actual Mass [g] 75.15 125.25 175.35 225.45 325.65 375.75

Estimated Mass [g]
75.80  ±

0.18
126.03±

0.13
177.74 
±0.20

225.75 ±
0.21

327.20 ±
0.17

374.39 ±
0.18

Percent Difference -0.87 % -0.62% -1.36% -0.13% -0.48% 0.36%

FNMC System at INL 2015

REF [2]
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From Passive to Active-Mode: System Design
• Interrogative source: AmLi

– Two AmLi neutron sources 
(~50,000 n/s)

• New components/features for 
active FNMC system

1) Polyethylene 
moderator/reflector for AmLi
sources

2) Compact electronics
3) 3-D printed Stilbene detector 

casing
4) New detector holder structure
5) Special acquisition techniques 

(on-board photon rejection)

7
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Experimental Campaign UM-INL 2016

Objectives: 

1. Measure multiplicity counts from induced fissions in Uranium samples of 
various mass content / enrichment

2. Produce mass calibration curve for fissile mass estimation

3. Investigate FNMC system sensitivity to diversion scenarios

Three sets of measurements: CRM-146, CRM-149, and uranium pins

8
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• CRM 149 and CRM 146 details (U3O8)

CRM 149

Al

U3O8

12.4 cm
12.17 cm

17.78 cm

1.79 cm

Total mass:
0.5 kg, 1 kg,
1.5 kg, 2 kg, 
3 kg, 4 kg

Experimental Campaign UM-INL 2016
CRM 146

Al

U3O8

7 cm

8 cm

10 cm

1.88 cm

Total mass:
230.08 g

CRM-149                  
(For all)

234U 235U 236U 238U

Iso. Comp. 
(wt%)

1.018 93.257 0.395 5.329

CRM-146          
Iso. Comp. 

(wt%)

234U 235U 236U 238U

CRM146-69 0.148 20.107 0.197 79.547

CRM146-70 0.375 52.800 0.264 46.560

CRM146-71 0.980 93.170 0.293 5.555

Presenter
Presentation Notes
Emphasize the samples rather than system, system details will be in intro slides. Detailed graphic of sample for CRM 146 149
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• Uranium pins (75.52 g per pin, enrichment = 16.37%, U3O8)

Experimental Campaign UM-INL 2016

32 pins
Mass = 2416.64 g

31 pins
Mass = 2341.12 g

30 pins
Mass = 2265.60 g

28 pins
Mass = 2114.56 g

24 pins
Mass = 1812.48 g

20 pins
Mass = 1510.4 g

16 pins
Mass = 1208.32 g
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Results: CRM-149

11

• 10 min measurement
• 60 keVee applied threshold (≈ 0.5 MeV 

neutron energy)

CRM-149 66 67 68 69 70 71
235U Mass [g] 393.1 786.2 1179.4 1572.2 2358.1 3144.3

*1 SD error bar shown

*1 SD error bar shown

*1 SD error bar shown
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Results: Mass Estimation
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• 10 min measurement
• 60 keVee applied threshold (≈ 0.5 MeV 

neutron energy)

*1 SD error bar shown

Proof of concept:

CRM-149 66 67 68 69 70 71
235U Mass [g] 393.1 786.2 1179.4 1572.2 2358.1 3144.3
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CRM-149 66 67 68 69 70 71
235U Mass [g] 393.1 786.2 1179.4 1572.2 2358.1 3144.3
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• 10 min measurement
• 60 keVee applied threshold (≈ 0.5 MeV 

neutron energy)

*1 SD error bar shown

Proof of concept:
1) Take subset of data as calibration 

samples

Results: Mass Estimation
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CRM-149 66 67 68 69 70 71
235U Mass [g] 393.1 786.2 1179.4 1572.2 2358.1 3144.3
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• 10 min measurement
• 60 keVee applied threshold (≈ 0.5 MeV 

neutron energy)

*1 SD error bar shown

Proof of concept:
1) Take subset of data as calibration 

samples
2) Fit calibration curve (second-order 

polynomial)

Results: Mass Estimation
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CRM-149 66 67 68 69 70 71
235U Mass [g] 393.1 786.2 1179.4 1572.2 2358.1 3144.3
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• 10 min measurement
• 60 keVee applied threshold (≈ 0.5 MeV 

neutron energy)

*1 SD error bar shown

Proof of concept:
1) Take subset of data as calibration 

samples
2) Fit calibration curve (second-order 

polynomial)
3) Take remainder of data as assay 

samples

Results: Mass Estimation
D
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CRM-149 66 67 68 69 70 71
235U Mass [g] 393.1 786.2 1179.4 1572.2 2358.1 3144.3
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CRM-149 67 68 70

Actual Mass [g] 806.5 1244.7 2203.6

Estimated Mass [g]
786.19 ±

3.96
1179.4 ±

4.64
2358.1 
±6.49

Percent Difference -2.58 % -5.54% 6.43%

• 10 min measurement
• 60 keVee applied threshold (≈ 0.5 MeV 

neutron energy)

*1 SD error bar shown

Proof of concept:
1) Take subset of data as calibration 

samples
2) Fit calibration curve (second-order 

polynomial)
3) Take remainder of data as assay 

samples
4) Estimate mass of assay samples 

with calibration curve

Results: Mass Estimation
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• What is the sensitivity of the FNMC system to detect a diversion scenario 
with > 95% confidence for a fixed measurement time?

1) How many pins must be removed such that the relative difference in D > 2σD of full 
assembly?

2) How does sensitivity change for various measurement times?

Results: Pin Diversion Sensitivity

Pins / 
Removed 

pins

235U Mass [g] D [cps] σD

32 / 0 2416.64 15.42 0.214
31 / 1 2341.12 15.56 0.218
30 / 2 2265.60 15.25 0.214
28 / 4 2114.56 14.72 0.211
24 / 8 1812.48 14.70 0.210

20 / 12 1510.40 12.33 0.192
16 / 16 1208.32 7.55 0.154

Measurement Time = 5 mins
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For a 1 minute measurement time, FNMC system can detect a    
12 pin diversion scenario (approx. 900 g removal) with > 95% confidence 

Results: Pin Diversion Sensitivity

Grey area shows the 
2σ confidence interval 
of the full assembly

Full Assembly (32 pins)

Diversion detected

Diversion undetected

Measurement Time = 1 min
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For a 3 minute measurement time, FNMC system can detect a  
8 pin diversion scenario (approx. 600 g removal) with > 95% confidence

Results: Pin Diversion Sensitivity

Grey area shows the 
2σ confidence interval 
of the full assembly

Full Assembly (32 pins)

Diversion detected

Diversion undetected

Measurement Time = 3 mins
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For a 5 minute measurement time, FNMC system can detect a      
4 pin diversion scenario (approx. 300 g removal) with > 95% confidence

Results: Pin Diversion Sensitivity

Grey area shows the 
2σ confidence interval 
of the full assembly

Full Assembly (32 pins)

Diversion detected

Diversion undetected

Measurement Time = 5 mins
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Conclusions

21

• Successfully measured neutron multiplets from induced 
fissions in active-mode (AmLi)
– U3O8 samples of various mass content and enrichment levels
– Uranium pin assemblies of various configurations

• Produced mass calibration curve and estimated fissile mass 
within ± 7% of actual mass for a 10 min measurement time

• Investigated FNMC system sensitivity of pin diversion 
scenarios
– Sensitive to 4 diverted pins with > 95% confidence in 5 mins
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System Characterization
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1) Gain matching 2) PSD performance 3) Gamma rejection 4) Timing properties

Cs-137 Calibration
Solid = EJ-309
Dashed = Stilbene

Acq. Threshold:
EJ-309 ≈ 60 keVee
Stilbene ≈ 40 keVee

Neutron PHD
Green = EJ-309
Blue = Stilbene

Rossi-Alpha Distribution
Die-away  ≈ 10s of ns



Consortium for Verification Technology

Counting Method
• Feynman counting method 

(constant window, random 
triggers) 
– Gate width = 200 ns
– Gives number of single detections 

(n=1), two-event coincidences (n=2), 
and three-event coincidences(n=3) 
within gate width  Det(n)

– First- (S), second- (D), and third-order 
(T) factorial moments from 
combinatorial expansion of Det(1), 
Det(2), and Det(3).

*Det(n) = Bx
+(τ) and S, D, and T are mb(µ=1), mb(µ=2), mb(µ=3), 

respectively according to Hages-Cifarelli notations

𝑚𝑚𝑏𝑏 µ = �
𝑥𝑥=µ

∞
𝑥𝑥
µ

𝐵𝐵𝑥𝑥+(𝜏𝜏) , [5]
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𝑆𝑆 = �
𝑛𝑛=1

∞

𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒 𝑛𝑛

𝐷𝐷 = �
𝑛𝑛=2

∞

𝑛𝑛(𝑛𝑛 − 1)𝐷𝐷𝑒𝑒𝑒𝑒 𝑛𝑛

𝑇𝑇 = �
𝑛𝑛=3

∞

𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2)𝐷𝐷𝑒𝑒𝑒𝑒 𝑛𝑛

REF [5]
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Doubles vs. Energy Threshold
• Neutron cross-talk 

decreases as energy 
threshold increases

• Comparison of D for 
various energy threshold 
(marginal differences in 
shape)

• Higher energy threshold 
= more sensitive to 
changes in D

29
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