Fast Neutron Multiplicity Counter: Development of an active-mode counter UM-INL Collaboration

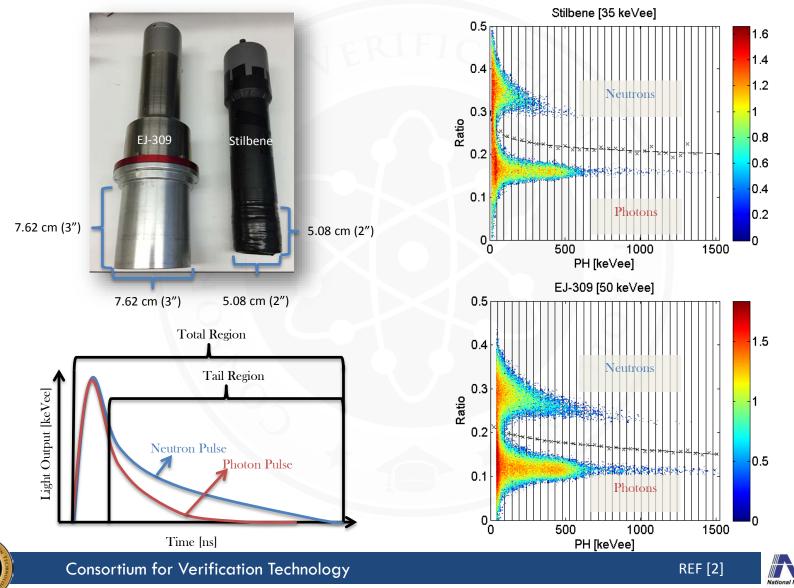
T.H. Shin¹, A. Di Fulvio¹, D.L. Chichester², S.D. Clarke¹, S.A. Pozzi¹

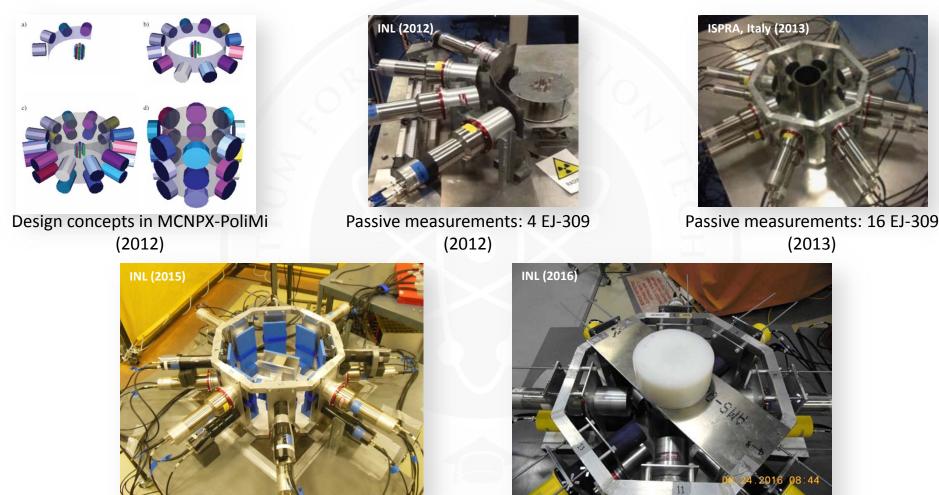
* thshin@umich.edu

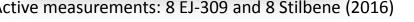
¹Department of Nuclear Engineering & Radiological Sciences, University of Michigan Ann Arbor MI, U.S.A. ²Idaho National Laboratory, Idaho Falls ID, U.S.A.



Introduction

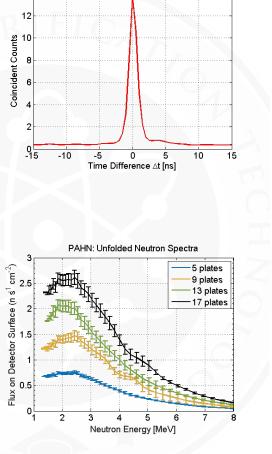

- Need technological advances for the verification and monitoring of special nuclear material (SNM)
- Neutron multiplicity counting (NMC) used for non-destructive assay
- Traditional NMC systems utilize capture-based thermal neutron detectors
 - Typically a well-type geometry
 - Relies heavily on ³He-based detectors/systems
 - Increasing cost of ³He gas
- Investigate ³He alternatives

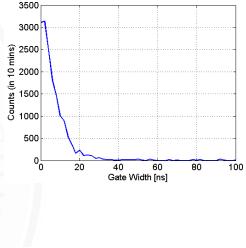


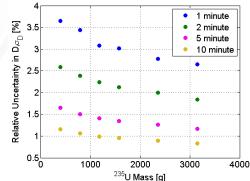

UM-INL Collaboration: Organic Scintillators

UM-INL Collaboration: Fast Neutron Multiplicity Counters

Passive measurements: 8 EJ-309 and 8 Stilbene (2015) Active measurements: 8 EJ-309 and 8 Stilbene (2016)

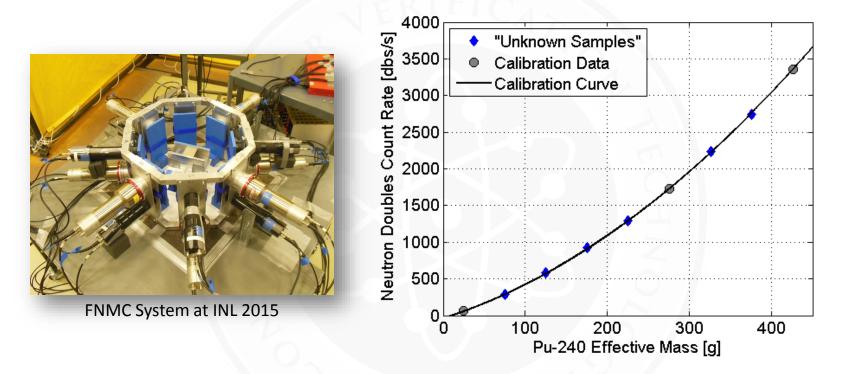





Advantages of Fast Neutron Multiplicity Counters

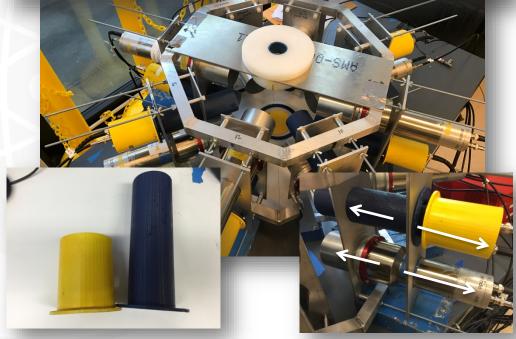
 $14 - 10^4$

- Much faster timing properties relative to thermal systems → improved timing resolution
- 2) No moderating material required
 → short die-away times
- Portion of initial neutron energy information retained → spectrum unfolding capabilities
- 4) Low rate of accidental correlated counts
 → lower uncertainty



UM-INL Collaboration: Passive Measurements (2015)

Number of Plates	3	5	7	9	13	15
Actual Mass [g]	75.15	125.25	175.35	225.45	325.65	375.75
Estimated Mass [g]	75.80 ±	126.03±	177.74	225.75 ±	327.20 ±	374.39 ±
	0.18	0.13	±0.20	0.21	0.17	0.18
Percent Difference	-0.87 %	-0.62%	-1.36%	-0.13%	-0.48%	0.36%



From Passive to Active-Mode: System Design

- Interrogative source: AmLi
 - Two AmLi neutron sources
 (~50,000 n/s)
- New components/features for active FNMC system
 - Polyethylene moderator/reflector for AmLi sources
 - 2) Compact electronics
 - 3) 3-D printed Stilbene detector casing
 - 4) New detector holder structure
 - 5) Special acquisition techniques (on-board photon rejection)

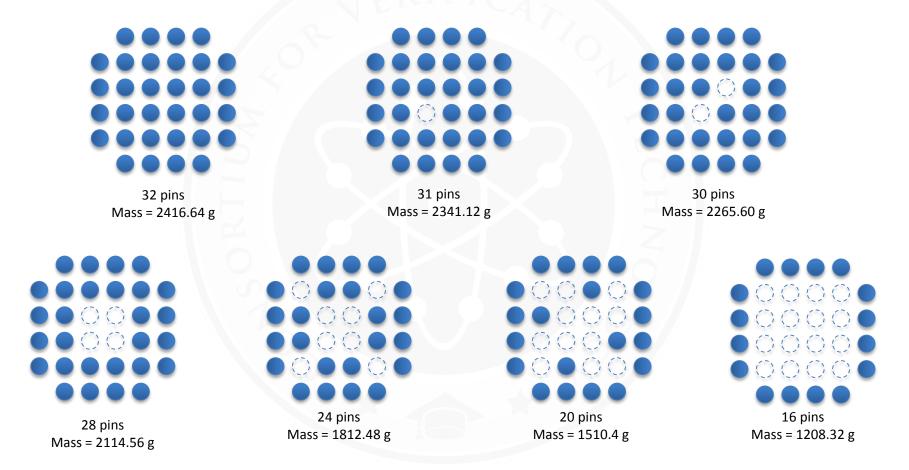
Experimental Campaign UM-INL 2016

Objectives:

- 1. Measure multiplicity counts from induced fissions in Uranium samples of various mass content / enrichment
- 2. Produce mass calibration curve for fissile mass estimation
- 3. Investigate FNMC system sensitivity to diversion scenarios

Three sets of measurements: CRM-146, CRM-149, and uranium pins

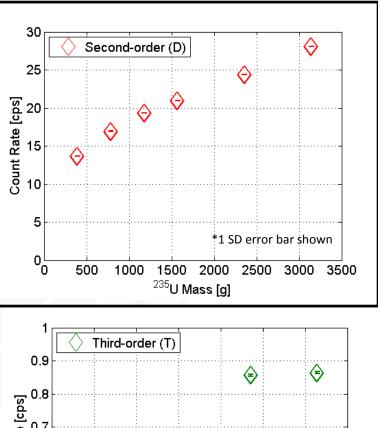
Experimental Campaign UM-INL 2016

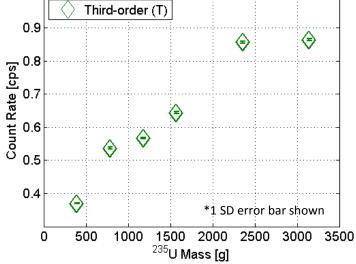

CRM 149 and CRM 146 details (U_3O_8) **CRM 146** Al **CRM 149** 10 cm Al Total mass: 17.78 cm 230.08 g Total mass: 0.5 kg, 1 kg, 1.88 cm 1.5 kg, 2 kg, U3O8 3 kg, 4 kg 7 cm 1.79 cm ⇒¦ 8 cm U3O8 12.17 cm **CRM-146** 234 238 Iso. Comp. 235 236 12.4 cm (wt%) **CRM146-69** 0.148 20.107 0.197 79.547 **CRM-149** 234 235 236 238 (For all) 0.375 52.800 0.264 46.560 CRM146-70 Iso. Comp. 1.018 0.395 5.329 <u>93.257</u> 0.980 93.170 0.293 5.555 CRM146-71 (wt%)

Experimental Campaign UM-INL 2016

• **Uranium pins** (75.52 g per pin, enrichment = 16.37%, U_3O_8)

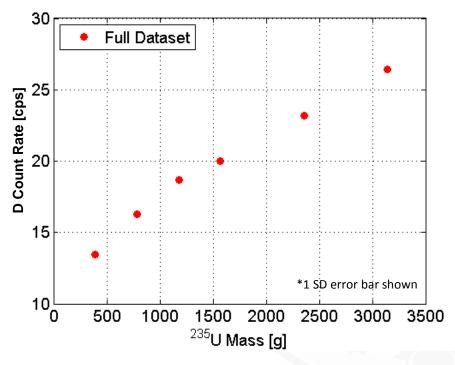





Results: CRM-149

- 10 min measurement
- 60 keVee applied threshold (≈ 0.5 MeV neutron energy)

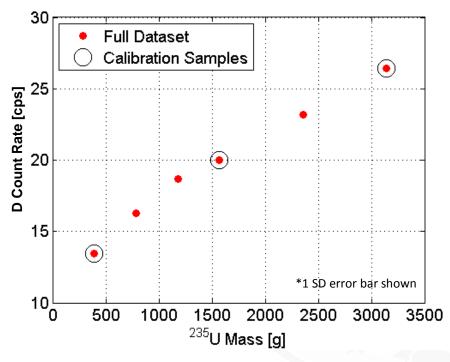
CRM-149	66	67	68	69	70	71
²³⁵ U Mass [g]	393.1	786.2	1179.4	1572.2	2358.1	3144.3



• 10 min measurement

Proof of concept:

 60 keVee applied threshold (≈ 0.5 MeV neutron energy)

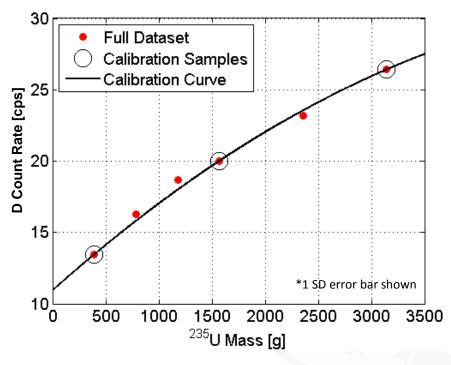


CRM-149	66	67	68	69	70	71
²³⁵ U Mass [g]	393.1	786.2	1179.4	1572.2	2358.1	3144.3

- 10 min measurement
- 60 keVee applied threshold (≈ 0.5 MeV neutron energy)

 CRM-149
 66
 67
 68
 69
 70
 71

 ²³⁵U Mass [g]
 393.1
 786.2
 1179.4
 1572.2
 2358.1
 3144.3

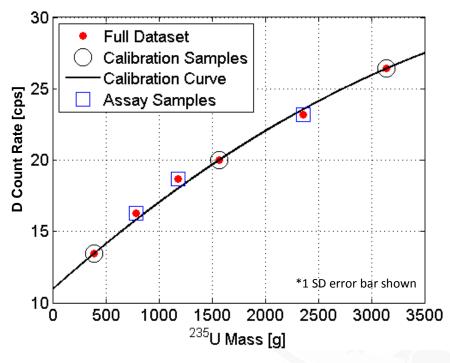

Consortium for Verification Technology

Proof of concept:

1) Take subset of data as calibration samples

- 10 min measurement
- 60 keVee applied threshold (≈ 0.5 MeV neutron energy)

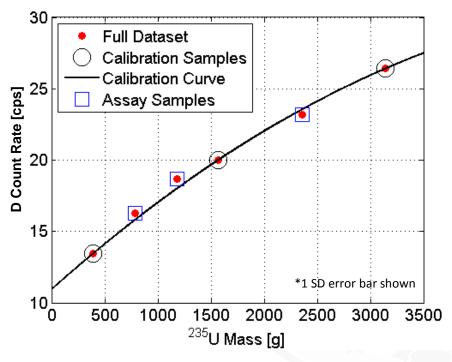
Proof of concept:


- 1) Take subset of data as calibration samples
- Fit calibration curve (second-order polynomial)

CRM-149	66	67	68	69	70	71
²³⁵ U Mass [g]	393.1	786.2	1179.4	1572.2	2358.1	3144.3
				1		

- 10 min measurement
- 60 keVee applied threshold (≈ 0.5 MeV neutron energy)

Proof of concept:

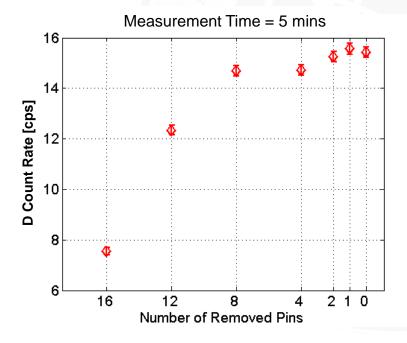

- Take subset of data as calibration samples
- 2) Fit calibration curve (second-order polynomial)
- 3) Take remainder of data as assay samples

CRM-149	66	67	68	69	70	71
²³⁵ U Mass [g]	393.1	786.2	1179.4	1572.2	2358.1	3144.3

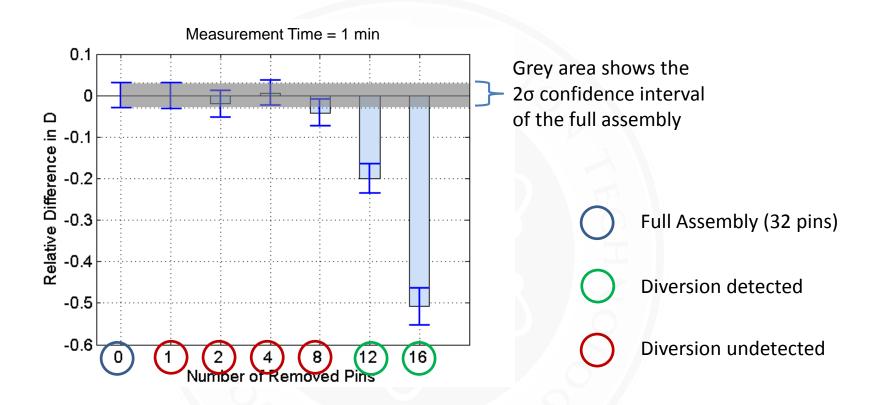
- 10 min measurement
- 60 keVee applied threshold (≈ 0.5 MeV neutron energy)

Proof of concept:

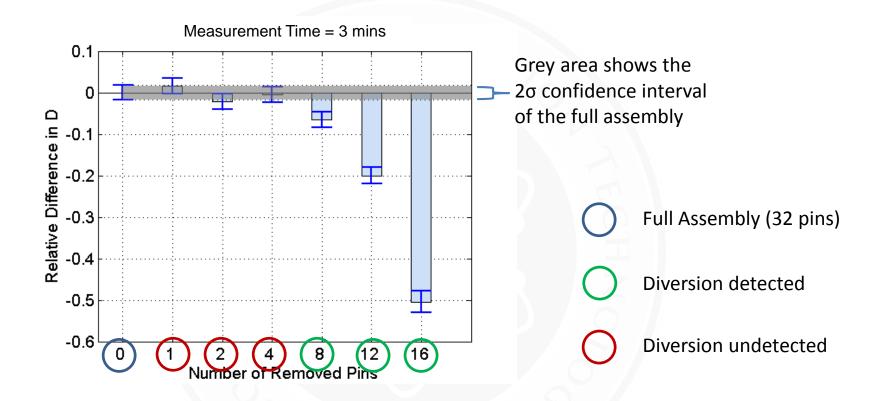
- Take subset of data as calibration samples
- Fit calibration curve (second-order polynomial)
- 3) Take remainder of data as assay samples
- 4) Estimate mass of assay samples with calibration curve


CRM-149	67	68	70
Actual Mass [g]	806.5	1244.7	2203.6
Estimated Mass [g]	786.19 ± 3.96	1179.4 ± 4.64	2358.1 ±6.49
Percent Difference	<u>-2.58 %</u>	<u>-5.54%</u>	<u>6.43%</u>

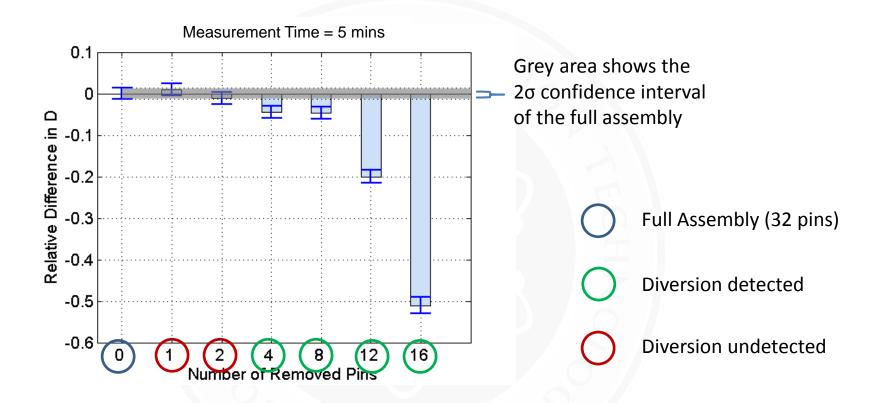
CRM-149	66	67	68	69	70	71
²³⁵ U Mass [g]	393.1	786.2	1179.4	1572.2	2358.1	3144.3


- What is the sensitivity of the FNMC system to detect a diversion scenario with > 95% confidence for a fixed measurement time?
 - 1) How many pins must be removed such that the relative difference in D > $2\sigma_D$ of full assembly?
 - 2) How does sensitivity change for various measurement times?

Pins / Removed pins	²³⁵ U Mass [g]	D [cps]	σ _D
32 / 0	<u>2416.64</u>	<u>15.42</u>	<u>0.214</u>
31 / 1	2341.12	15.56	0.218
30 / 2	2265.60	15.25	0.214
28 / 4	2114.56	14.72	0.211
24 / 8	1812.48	14.70	0.210
20 / 12	1510.40	12.33	0.192
16 / 16	1208.32	7.55	0.154



For a *1 minute measurement time*, FNMC system can detect a <u>12 pin diversion scenario (approx. 900 g removal) with > 95% confidence</u>



For a *3 minute measurement time*, FNMC system can detect a <u>8 pin diversion scenario (approx. 600 g removal) with > 95% confidence</u>

For a *5 minute measurement time*, FNMC system can detect a <u>4 pin diversion scenario (approx. 300 g removal) with > 95% confidence</u>

Conclusions

- Successfully measured neutron multiplets from induced fissions in active-mode (AmLi)
 - U₃O₈ samples of various mass content and enrichment levels
 - Uranium pin assemblies of various configurations
- Produced mass calibration curve and estimated fissile mass within ± 7% of actual mass for a 10 min measurement time
- Investigated FNMC system sensitivity of pin diversion scenarios
 - Sensitive to 4 diverted pins with > 95% confidence in 5 mins

Acknowledgment

The authors thank D.L. Chichester (INL) for their collaboration to this research.

This work was funded in-part by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534.

Thank you for your time!

Special thanks to C. Sosa and S. Watson for their help during the experiment! <u>Demonstration: Michigan Room</u>

Fast Neutron Multiplicity Counter: Development of an active-mode counter UM-INL Collaboration

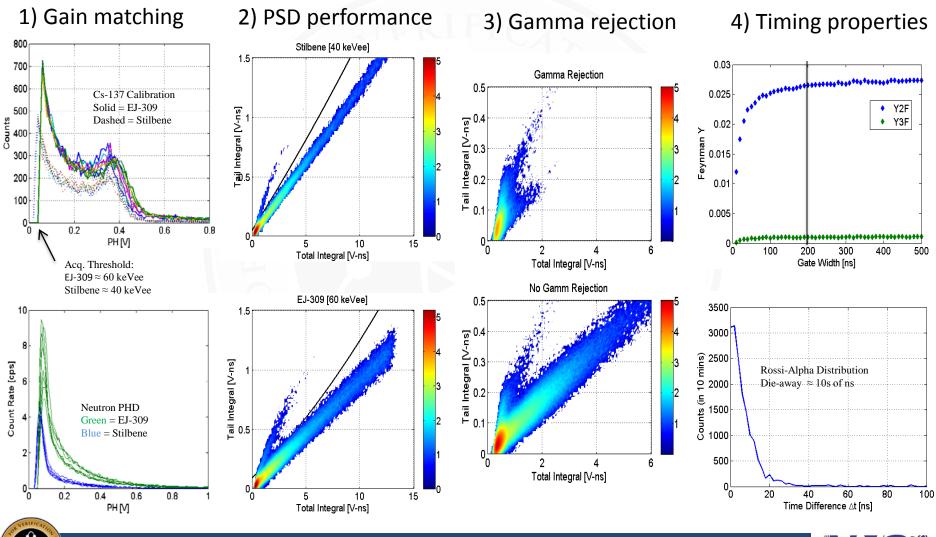
T.H. Shin¹, A. Di Fulvio¹, D.L. Chichester², S.D. Clarke¹, S.A. Pozzi¹

* thshin@umich.edu

¹Department of Nuclear Engineering & Radiological Sciences, University of Michigan Ann Arbor MI, U.S.A. ²Idaho National Laboratory, Idaho Falls ID, U.S.A.

References

- 1) N.Ensslin, W.C. Harker, M.S. Krick, D.G. Langner, M.M. Pickrell, J.E. Stewart, Application guide to neutron multiplicity counting, LA-13422-M, Los Alamos National Laboratory (1998)
- T.H. Shin, A. Di Fulvio, T. Jordan, D.L. Chichester, S.D. Clarke, S.A. Pozzi. "Fast Neutron Multiplicity Counter based on Stilbene and EJ-309 Scintillators for Nuclear Non-Destructive Assay" INMM 57th Annual Meeting, Atlanta GA. (2016)
- 3) D.L. Chichester, S.A. Pozzi, J.L. Dolan, M.T. Kinlaw, A.C. Kaplan, M. Flaska, A. Enqvist, J.T. Johnson, S.M. Watson, MPACT Fast Neutron Multiplicity System Design Concepts, INL/EXT-12-27619, Idaho National Laboratory (2012)
- 4) J.L. Dolan, M. Flaska, A. Poitrasson-Riviere, A. Enqvist, P. Peerani, D.L. Chichester, S.A. Pozzi. "Plutonium measurements with a fast-neutron multiplicity counter for nuclear safeguards applications" Nuclear Instuments and Methods in Physics Research A, Vol 763, pgs. 565-574 (2014)
- 5) W. Hage, D.M. Cifarelli. "Models for a three-parameter analysis of neutron signal correlation measurements for fissile material assay" Nuclear Instruments and Methods in Phys. Research A, Vol 251, pgs. 550-563 (1986)



Extra Slides

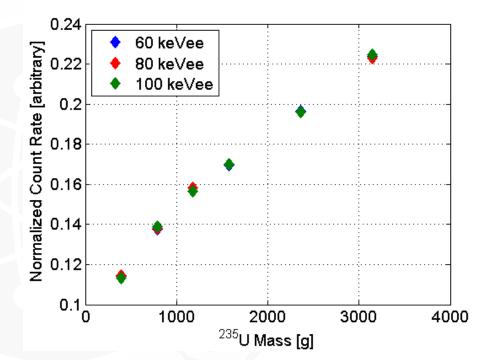
System Characterization

Counting Method

- Feynman counting method (constant window, random triggers)
 - Gate width = 200 ns
 - Gives number of single detections (n=1), two-event coincidences (n=2), and three-event coincidences(n=3) within gate width → Det(n)
 - First- (S), second- (D), and third-order (T) factorial moments from combinatorial expansion of Det(1), Det(2), and Det(3).

*Det(n) = $B_x^+(\tau)$ and S, D, and T are $m_{b(\mu=1)'}$, $m_{b(\mu=2)'}$, $m_{b(\mu=3)'}$ respectively according to Hages-Cifarelli notations

$$m_{b(\mu)} = \sum_{x=\mu}^{\infty} {\binom{x}{\mu}} B_x^+(\tau)$$
,[5]


$$S = \sum_{n=1}^{\infty} nDet(n)$$
$$D = \sum_{n=2}^{\infty} n(n-1)Det(n)$$

$$T = \sum_{n=3}^{\infty} n(n-1)(n-2)Det(n)$$

Doubles vs. Energy Threshold

- Neutron cross-talk decreases as energy threshold increases
- Comparison of D for various energy threshold (marginal differences in shape)
- Higher energy threshold
 more sensitive to
 changes in D

