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Laser-induced plasmas (LIP)
• Remote sensing applications [1-2]:

– Nuclear safeguards
– Space exploration
– Biological/geological forensics

• Intense pulsed laser focused onto a target generates plasma
– Plasma consists of excited atoms, ions, molecules, nano- and micro-

particles 
– Plasma cools emitting electromagnetic radiation

• Emission useful as diagnostic tool through spectroscopy 
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[1] J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, Amsterdam, 2007).
[2] S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy—Fundamentals and 
Applications (Springer Series in Optical Sciences, 2014).
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Optical sensing techniques
1. Laser-ablation (LA) coupled 

with optical emission 
spectroscopy (OES)

2. LA molecular isotopic 
spectrometry (LAMIS)

3. LA coupled with laser 
absorption spectroscopy 
(LAS)

4. Various imaging techniques 
(i.e. spectral mapping, 
shadowgraphy)
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LIP for nuclear material sensing

5

LIP related techniques for nuclear material sensing

Advantages Disadvantages

Non-destructive spectroscopic methods Matrix effects from multi-element targets

Remote detection capability Congested spectra from high-Z targets (Th, U, Pu)

High spatial (µm) and temporal (<fs) resolution Limited studies/models for molecular Th, U, Pu 

Vast parametric space for signal optimization Material detection/ID vs. radiation detection

Skrodzki et 
al. (2016)
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LIP for nuclear material sensing
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Cremers et 
al. (2012)

Doucet et 
al. (2011)

Skrodzki et 
al. (2016)

Hartig et al. 
(2013)

Vast parametric space for optimization ↑Precision; Isotope distinction
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Recent LIP applications in U sensing
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• Dual-pulse (DP) OES 
enhances standard single-
pulse (SP) signal

• Initial pulse ablates target

• Secondary pulse reheats 
plasma → more emission

• Also increases background 
and noise

[3] P. J. Skrodzki, J. R. Becker, P. K. Diwakar, S. S. Harilal, A. Hassanein, Applied Spectroscopy (2016).
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Recent LIP applications in U sensing
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[4] P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, S. S. Harilal , 
Spectrochimica Acta B (2016).

• Recent comparison of U 
emission spectra from two 
solid targets [4]:

– Kopp glass containing 1.3% natural U by 
mass

– Depleted U metal

• U oxide bands prevalent among 
several U I features in metal

• Matrix effects mitigate U signal in 
glass 
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Laser-induced sparks & impetus
• Aforementioned studies include primarily solid targets
• Gaseous targets generate sparks which have various applications in 

ignition, machining, further nuclear material sensing
• Uranyl fluoride (UO2F2) is relevant to enrichment process and may be an 

indicator of enrichment facilities
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Kemp (2006)



Consortium for Verification Technology

Impetus
1. Employ optical sensing and imaging techniques to understand spark 

morphology 
2. Identify physical phenomena associated with expansion and collapse of 

sparks
3. Optimize spectroscopic viewing windows (spatial and temporal) in sparks 

for latter applications in UO2F2 sensing
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Expansion & collapse of sparks
Previous literature shows heating (excitation and ionization) of the gas 
surrounding the spark [5]:
1. Prompt electrons: 

• Originate from interaction between laser pulse and target 
• ~101-102 ns

2. Radiative heating:
• Intense ultraviolet (UV) radiation from plasma
• Early emission (~101-103 ns) relative to plasma lifetime (~ms)
• Instantaneous interaction with surrounding gas

3. Detonative heating
• Pressure/density gradient from LPP generates shock
• Shock expands detaching from plasma (~101-102 µs)
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[5] S. S. Harilal, B. E. Brumfield, and M. C. Phillips, “Lifecycle of laser-produced air sparks,” 
Phys. Plasmas 22, 063301 (2015).
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• Appearance of O I emission features at 
~300-400 ns at 2.5-mm distance from 
kernel

• Shock only reaches 2.5-mm distance 
after 4500 ns

• Profound late-time features following 
arrival of plasma

0 mm 2.5 mm
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Modeling Details
Model
• Open source Computational Fluid Dynamics (CFD) software package OpenFOAM
• 2D numerical simulation of laser-induced electrical breakdown of air
• Computational domain: 5-mm (x-axis) x 10-mm (y-axis) discretized into 250 x 500

cell mesh, respectively
• Left-side y-boundary considered a symmetry axis while outflow boundaries are

placed sufficiently far from region of interest in flow field
Parameter Space
• Ambient: Ar; pressure 101,325 kPa; temperature 300 K
• Initial plasma specified as ellipse with 50-µm (x-axis) x 150-µm (y-axis) major axis

lengths
• Initial plasma: air; pressure 25 MPa; temperature 70,000 K
• Equation of state: Ideal Gas Law
• Duration: 10 µs following onset of laser pulse
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Conclusion & future work
Experiment
• Different gases exhibit unique shock morphologies related to laser absorption parameters
• Observed time-dependent emission features unique to each gas

– Broad mixing at early times, ionic emission, neutral emission, then molecular emission
• Radiative heating proves dominant mechanism; detonative heating negligible
Model
• The shockwave pressure is ~20 times greater than the atmospheric pressure at 100 ns and 

then rapidly decreases as the spark decays
• The shock front becomes increasingly symmetric in the shape with time
• The temperature of the plasma has severely decreased from 70,000 K to ~20,000 K during 

the first 100 ns
Future Work
• Expanding optical techniques to sparks containing UO2F2
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Experiment Details
Breakdown
• Generate gaseous spark in four gases (air, argon, nitrogen, helium) at 

atmospheric pressure (~760 Torr)
• 55 mJ energy, 1064 nm Nd:YAG (8 ns FWHM) focused to ~100 µm spot 

diameter – 90 GW cm-2

Time-resolved Shadowgraphy
• Pressure/density difference along shock-front has different refractive 

index
• Observe shock by shining backlight laser through spark onto CCD camera
• ~5 mJ, 532 nm Nd:YAG (4 ns FWHM) expanded to ~1 cm spot diameter as 

backlight
Time-resolved Spectroscopy
• Observe emission at three horizontal positions with respect to plasma 

core (kernel): kernel (0 mm), 1.25 mm, and 2.5 mm
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Argon
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Argon
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Nitrogen
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Nitrogen
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Helium
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Helium
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