### Investigation of fundamental mechanisms related to ambient gas heating and hydrodynamics of laser-induced plasmas

P. J. Skrodzki





## Acknowledgements

This work is supported by the DOE/NNSA Office of Nonproliferation and Verification Research and Development (NA-22). Pacific Northwest National Laboratory is operated for the U.S. DOE by the Battelle Memorial Institute under Contract No. DE-AC05-76RL01830. P. J. Skrodzki and A. Miloshevsky would like to acknowledge support and funding from Summer Undergraduate Laboratory Internship program sponsored by the U.S. DOE.

#### People

S. S. Harilal

M. C. Phillips

A. Miloshevsky

B. E. Brumfield

N. L. LaHaye

K. C. Hartig

I. Jovanovic

- N. P. Shah
- N. Taylor











# Laser-induced plasmas (LIP)

- Remote sensing applications [1-2]:
  - Nuclear safeguards
  - Space exploration
  - Biological/geological forensics



Mars Curiosity Rover

- Intense pulsed laser focused onto a target generates plasma
  - Plasma consists of excited atoms, ions, molecules, nano- and microparticles
  - Plasma cools emitting electromagnetic radiation
    - Emission useful as diagnostic tool through spectroscopy

 [1] J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, Amsterdam, 2007).
[2] S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy—Fundamentals and Applications (Springer Series in Optical Sciences, 2014).





# **Optical sensing techniques**

- Laser-ablation (LA) coupled with optical emission spectroscopy (OES)
- 2. LA molecular isotopic spectrometry (LAMIS)
- LA coupled with laser absorption spectroscopy (LAS)
- 4. Various imaging techniques (i.e. spectral mapping, shadowgraphy)







## LIP for nuclear material sensing

LIP related techniques for nuclear material sensing

| Advantages                                                                                                               | Disadvantages                                     |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Non-destructive spectroscopic methods                                                                                    | Matrix effects from multi-element targets         |
| Remote detection capability                                                                                              | Congested spectra from high-Z targets (Th, U, Pu) |
| High spatial (µm) and temporal ( <fs) resolution<="" td=""><td>Limited studies/models for molecular Th, U, Pu</td></fs)> | Limited studies/models for molecular Th, U, Pu    |
| Vast parametric space for signal optimization                                                                            | Material detection/ID vs. radiation detection     |





Consortium for Verification Technology



Skrodzki et

al. (2016)

# LIP for nuclear material sensing







### Recent LIP applications in U sensing

- Dual-pulse (DP) OES enhances standard singlepulse (SP) signal
- Initial pulse ablates target
- Secondary pulse reheats plasma → more emission
- Also increases background and noise







### Recent LIP applications in U sensing

- Recent comparison of U emission spectra from two solid targets [4]:
  - Kopp glass containing 1.3% natural U by mass
  - Depleted U metal
- U oxide bands prevalent among several U I features in metal
- Matrix effects mitigate U signal in glass



[4] P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, S. S. Harilal, Spectrochimica Acta B (2016).





## Laser-induced sparks & impetus

- Aforementioned studies include primarily solid targets
- Gaseous targets generate *sparks* which have various applications in ignition, machining, further nuclear material sensing
- Uranyl fluoride (UO<sub>2</sub>F<sub>2</sub>) is relevant to enrichment process and may be an indicator of enrichment facilities





Fig. 2. Isopleths for routine-release.  $UO_2F_2$  concentration in  $\mu g/m^3$ .





## Impetus

- 1. Employ optical sensing and imaging techniques to understand spark morphology
- 2. Identify physical phenomena associated with expansion and collapse of sparks
- 3. Optimize spectroscopic viewing windows (spatial and temporal) in sparks for latter applications in  $UO_2F_2$  sensing







# Expansion & collapse of sparks

Previous literature shows heating (excitation and ionization) of the gas surrounding the spark [5]:

- 1. Prompt electrons:
  - Originate from interaction between laser pulse and target
  - ~10<sup>1</sup>-10<sup>2</sup> ns
- 2. Radiative heating:
  - Intense ultraviolet (UV) radiation from plasma
  - Early emission (~10<sup>1</sup>-10<sup>3</sup> ns) relative to plasma lifetime (~ms)
  - Instantaneous interaction with surrounding gas
- 3. Detonative heating

Phys. Plasmas 22, 063301 (2015).

- Pressure/density gradient from LPP generates shock
- Shock expands detaching from plasma (~10<sup>1</sup>-10<sup>2</sup> μs)

[5] S. S. Harilal, B. E. Brumfield, and M. C. Phillips, "Lifecycle of laser-produced air sparks,"

Laser

#### Air Shockwave (400 ns)







































Appearance of O I emission @ 2.5 mm



- Appearance of O I emission features at ~300-400 ns at 2.5-mm distance from kernel
- Shock only reaches 2.5-mm distance after 4500 ns
- Profound late-time features following arrival of plasma













## Modeling Details

#### Model

- Open source Computational Fluid Dynamics (CFD) software package OpenFOAM
- 2D numerical simulation of laser-induced electrical breakdown of air
- Computational domain: 5-mm (x-axis) x 10-mm (y-axis) discretized into 250 x 500 cell mesh, respectively
- Left-side *y*-boundary considered a symmetry axis while outflow boundaries are placed sufficiently far from region of interest in flow field

#### Parameter Space

- Ambient: Ar; pressure 101,325 kPa; temperature 300 K
- Initial plasma specified as ellipse with 50-μm (x-axis) x 150-μm (y-axis) major axis lengths
- Initial plasma: air; pressure 25 MPa; temperature 70,000 K
- Equation of state: Ideal Gas Law
- Duration: 10 µs following onset of laser pulse

















## **Conclusion & future work**

#### Experiment

- Different gases exhibit unique shock morphologies related to laser absorption parameters
- Observed time-dependent emission features unique to each gas
  - Broad mixing at early times, ionic emission, neutral emission, then molecular emission
- Radiative heating proves dominant mechanism; detonative heating negligible

#### Model

- The shockwave pressure is ~20 times greater than the atmospheric pressure at 100 ns and then rapidly decreases as the spark decays
- The shock front becomes increasingly symmetric in the shape with time
- The temperature of the plasma has severely decreased from 70,000 K to ~20,000 K during the first 100 ns

#### **Future Work**

Expanding optical techniques to sparks containing UO<sub>2</sub>F<sub>2</sub>





## **Experiment Details**

#### Breakdown

- Generate gaseous spark in four gases (air, argon, nitrogen, helium) at atmospheric pressure (~760 Torr)
- 55 mJ energy, 1064 nm Nd:YAG (8 ns FWHM) focused to ~100 μm spot diameter – 90 GW cm<sup>-2</sup>

#### **Time-resolved Shadowgraphy**

- Pressure/density difference along shock-front has different refractive index
- Observe shock by shining backlight laser through spark onto CCD camera
- ~5 mJ, 532 nm Nd:YAG (4 ns FWHM) expanded to ~1 cm spot diameter as backlight

#### **Time-resolved Spectroscopy**

• Observe emission at three horizontal positions with respect to plasma core (kernel): kernel (0 mm), 1.25 mm, and 2.5 mm





#### Argon



#### Argon









### Nitrogen



### Nitrogen









### Helium

| He     | 10 ns   | 100 ns  | 200 ns  | 400 ns  |
|--------|---------|---------|---------|---------|
| 1.0 mm |         |         |         |         |
|        | 600 ns  | 800 ns  | 1000 ns | 1200 ns |
|        | 1400 ns | 1600 ns | 1800 ns | 2000 ns |

### **Helium**

