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Background
• Analog-to-digital (A/D) conversion instruments are advancing rapidly in terms of 

resolution, sampling rate, channel density, and cost

• Our ability to acquire radiation detector signals is surpassing our ability to analyze 
them in real time

• There are many multi-modal radiation detector systems currently under 
development by NNSA and other government agencies to support future arms 
reduction initiatives:

– Gamma and neutron time-of-arrival, energy, and multiplicity systems
– Fast neutron imagers
– Spectroscopic gamma imagers

• Some of these systems can output 100s of gigabytes to terabytes of digitally 
sampled radiation detector signals from a single measurement

• We are working with SNL, ORNL, and Duke to develop alternative methods for data 
compression and analysis in high-throughput radiation detection systems

2



Consortium for Verification Technology

SNL single-volume scatter camera (SVSC)
• Relative to a multi-volume scatter 

camera, an SVSC can potentially have 
10× higher efficiency

• The camera has to be able to resolve 
pairs of sequential neutron scatters 
separated by 1 to 2 cm to attain such 
high efficiency

• The microchannel plate (MCP) 
photodetectors’ (𝑥𝑥,𝑦𝑦, 𝑡𝑡)-dependent 
waveforms have to be fully digitized 
to resolve such closely spaced events

• That is one of the most significant 
challenges to designing a functioning 
SVSC
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Single-volume scatter camera 
using pillars of plastic scintillator (SVSC-PiPS)

• NCSU is supporting SNL’s LDRD by exploring 
an alternative SVSC design

• The SVSC-PiPS divides the SVSC scintillator 
cell into a 2D array of optically isolated 
plastic scintillator channels

• The large number of digitizer channels the 
SVSC needs can be replaced by an array of 
discriminators

• Only 2 photodetector channels would need 
to be digitized for each interaction

• The (𝑥𝑥, 𝑦𝑦)-location of each interaction can be 
determined from the channel that registered 
a light pulse

• The 𝑧𝑧-location can be determined by fitting 
the light pulse shape
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Estimating scintillation position in the SVSC-PiPS
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• Only a small number of photons are detected 
for each neutron scatter
– Quenching: 1 MeV neutron energy deposition = 

~150 keVee
– Luminosity: 10,000 scintillation photons per 

MeVee = ~1,500 photons
– 30% light collection efficiency × 20% 

photocathode quantum efficiency = ~100 
photoelectrons

• The uncertainty in the number of scintillation 
photons detected on either end of the 
channel is large (~10%) on a per-event basis

• The uncertainty in the ratio of photons 
counted on either end is very large (~14%) 
on a per-event basis

• Scintillation position can only be estimated 
to about 5 cm using the ratio of photons 
counted on either end
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Estimating scintillation position using MLE 
to fit photoelectron arrival history
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• We used Geant4’s model of 
optical photon transport to 
construct response functions for 
the SVSC-PiPS channels vs. 
scintillation position

• We used MLE to fit the observed 
photoelectron arrival history with 
the channel response function

• This analysis produces a much 
more precise estimate of 
scintillation position
– 1 MeV neutron: 9 mm / 80 keV (8%)
– 2 MeV neutron: 5 mm / 40 keV (2%)
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SVSC-PiPS point source location
• We used MCNPX-PoliMi to simulate 

the SVSC-PiPS response to a point 
source of fission neutrons

• The photoelectron arrival time 
history was analyzed by fitting the 
photoelectron arrival history to 
estimate the 𝑧𝑧-location of each 
scintillation

• The incoming neutron direction was 
estimated using back-projection and 
MLE

• These simulations predict that the 
SVSC-PiPS can precisely identify 
incoming neutron direction
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Nevada Test Site experiments with ORNL/SNL 
neutron coded aperture imager (NCAI)

• We worked with ORNL and SNL to 
deploy the NCAI during the 2015 and 
2016 CVT experiment campaigns at 
NTS

• The NCAI uses 1,600 physical pixels 
composed of EJ299-33 plastic 
scintillator

• We conducted imaging 
measurements of weapons-grade 
plutonium and highly enriched 
uranium metal

– Plutonium: passive imaging
– Uranium: active imaging

• We developed methods to 
reconstruct images of fissile material
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Exploiting fission chain-reaction dynamics 
to passively image fissile material
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Passive imaging of fission chain-reaction neutrons
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Active imaging of induced fission neutrons
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Kinematic reconstruction of proton-recoil energy 
(KREPRE) experiment
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• We worked with the Triangle Universities 
Nuclear Lab (TUNL) to conduct an 
experiment to precisely measure anisotropy 
in crystalline organic scintillator light output

• We used the TUNL tandem Van de Graaf 
accelerator to generate tunable, 
monoenergetic neutron beams from the d(d, 
n) reaction

• We used kinematics to estimate recoil proton 
energy from neutron-hydrogen scattering

𝐸𝐸𝑝𝑝 = 𝐸𝐸𝑛𝑛 sin2 𝜓𝜓

• We characterized anisotropy in the light 
output of stilbene over proton recoil 
energies between 500 keV and 10 MeV
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Light output vs. recoil proton energy

• We know the neutron beam 
energy within a few percent

• We also know the scatter angle 
(from the backing detector that 
triggered) within a few percent

• The mean recoil proton energy 
was estimated to better than one 
percent in less than 24 hours of 
beam-time

• Nuisance events (e.g., multiple 
hydrogen scatter) were 
discriminated out using time-of-
flight
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Anisotropy of stilbene light output
• We measured stilbene light output at 

> 10 proton recoil energies vs. angle 
w.r.t. the c´-axis

• Stilbene exhibited minimum light 
output when the proton recoil 
direction was parallel to the c´-axis

• We also characterized the light 
output anisotropy w.r.t. the a- and b-
axes

• The experiments took only a few days 
of beam-time

• We have started analyzing the 
anisotropy in pulse shape
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Frequency-domain multiplexing (FDM)
• TUNL has a cache of ~300 plastic 

scintillators and PMTs
• We are working to expand the 

KREPRE experiment to use 300 
backing detectors

• We have developed a method to 
multiplex multiple backing detectors 
to a single digitizer channel

• Each backing detector signal will be 
modulated at a specific frequency 
using a series RLC-circuit

• The backing detector that triggered 
will be identified by its modulation 
frequency
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Estimating energy deposition and arrival time 
from FDM-modulated signals

• The energy deposition and arrival 
time of the detector anode pulse 
are encoded in the FDM-
modulated signal

• FDM signal amplitude is 
proportional to anode signal 
amplitude

• FDM signal phase is inversely 
proportional to anode pulse 
trigger time

• We can precisely estimate energy 
deposition and arrival time from 
FDM-modulated signals
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Summary

• We’re working with ORNL, SNL, and Duke to develop alternative 
approaches to data analysis and compression for “high data 
velocity” detector systems

• We’re working to reduce the “data velocity” of different detector 
systems using alternative data acquisition/processing logic
– SVSC-PiPS: reduce number of channels that have to be digitized by a 

factor of 512:2
– NCAI: reconstruct images from induced fission and fission chain-

reaction neutrons
– KREPRE: measure proton recoil energy using coincidence logic
– FDM: multiplex multiple detectors to a single digitizer channel
– We are also working with Struck Innovative Systeme (SIS) to 

implement event rejection based on particle ID using the SIS3316 
onboard FPGA
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CVT fellows, associates, and partners
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Dr. Jonathan Mueller
Post-doctoral fellow

Kyle Weinfurther
Graduate fellow

Mudit Mishra
Graduate associatePete Chapman

Graduate associate

Rob Weldon
Graduate fellow

Partners:
• Erik Brubaker (SNL)
• Jason Newby (ORNL)
• Paul Hausladen (ORNL)
• Phil Barbeau (Duke)
• Jesson Hutchinson (LANL)
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