# Neutron Cross-Talk Characterization of Liquid Organic Scintillators for Cross-Correlation Measurements



### Abstract

Scatter-based organic scintillators have been introduced as a promising alternative to thermal neutron capture detectors (i.e. He-3). However, these scintillators are prone to neutron cross-talk events, which occur when a single neutron scatters and deposits energy above acquisition threshold in two or more separate detectors, adversely increasing correlated counts. The experimental setup designed to isolate cross-talk neutrons from a Cf-252 spontaneous fission source was modeled in MCNPX-PoliMi and show agreement within 15% for all cases. The relative contribution of cross-talk counts on the total observed counts were characterized by three parameters: detector-detector distance, detector-source-detector angle, and light output threshold. Results show that cross-talk counts increase for decreasing values of detector-detector distance and detector-source-detector angle. Furthermore, simulations show that cross-talk counts decrease with increasing light output threshold. Characterization of neutron crosstalk can be implemented in optimizing nuclear nonproliferation and safeguards measurement systems that utilize arrays of scintillators.

## **Goals and Objectives**

- Measure cross-talk neutrons from a Cf-252 spontaneous fission source at various positions
- Validate MCNPX-PoliMi simulations
- Quantify the relative contribution of cross-talk counts as a function of detector-detector distance (d<sub>d</sub>), detectorsource-detector angle ( $\Theta$ ), and light output threshold LO<sub>th</sub>





Figure diagram showing the path of a cross-talk neutron

A schematic Figure 2. Image of the experimental setup and the detailed MCNPX-PoliMi model.



This work was funded in-part by the Consortium for **Verification Technology under Department of Energy National Nuclear Security** Administration award number DE-NA0002534

T.H. Shin<sup>1</sup>, M.J. Marcath<sup>1</sup>, A. Di Fulvio<sup>1</sup>, S.D. Clarke<sup>1</sup> Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI<sup>1</sup> Dr. Sara A. Pozzi, pozzisa@umich.edu Consortium for Verification Technology (CVT)

Methods

- Cf-252 spontaneous fission source was measured with two 7.62cm x 7.62cm cylindrical liquid organic scintillators set to acquire coincident detections
- Polyethylene shadow bar was placed to isolate cross-talk events while mitigating true correlated counts

## Results

### Validate MCNPX-PoliMi Simulations with Measured Data

MCNPX-PoliMi simulations were validated by comparing the time distribution of correlated neutron counts and the integrated count rate and show good agreement

Table 1. Comparison of integrated count rates.

| Detector-Source-Detector Angle O                   | 10°     | 20°     | 30°     |
|----------------------------------------------------|---------|---------|---------|
| Measured Integrated Count Rate<br>[counts/sec]     | 2.798   | 0.6954  | 0.3301  |
| MCNPX-PoliMi Integrated Count Rate<br>[counts/sec] | 3.213   | 0.7313  | 0.3561  |
| Percent Difference                                 | 12.91 % | 4.901 % | 7.292 % |



Figure 3. Time distribution of correlated neutron counts, processed with  $LO_{th} = 70 \text{ keVee}$ 

## **Cross-Talk Counts for Various** $d_{dd}$ **and** $\Theta$

Integrated time distributions as a function of detectordetector distance (d<sub>d</sub>) exhibited at various detectorsource-detector angle  $(\Theta)$ 



Figure 4. Integrated count rates as a function of  $d_{dd}$  and  $\Theta$ , processed with  $LO_{th} = 70$  keVee

## **Cross-Talk Counts for Various LO**<sub>th</sub>

- counts as a function of LO<sub>th</sub>
- from total observed counts in simulations
- Relative cross-talk counts defined as:



350 keVee

- simulations
- and  $\Theta$
- laboratory setting



• Further analysis in MCNPX-PoliMi to investigate cross-talk

Post-processing script utilized to extract cross-talk counts

Figure 4. Relative cross-talk counts at various  $\Theta$  for  $LO_{th} = 70$  keVee –

## Conclusion

Cross-talk neutrons from a Cf-252 spontaneous fission source were measured and agree well with MCNPX-PoliMi

Both simulation and measurement results show that crosstalk counts are on the order of true coincidences at low  $d_{dd}$ 

The relative magnitude of cross-talk counts on the total observed counts increases as LO<sub>th</sub> decreases

### **Future Work**

Future work will investigate methods to isolate cross-talk neutrons from true correlated neutron counts in the

