Information Barriers based on Enhanced Automated Isotope Identification

PI: Clair J. Sullivan, Students: Mark Kamuda, Mara Watson UIUC, Department of Nuclear, Plasma, and Radiological Engineering CVT – Consortium for Verification Technology

Goals and Objectives

- Create a black box for treaty verification
 - Whole spectra, or parts of spectra are analyzed
 - A 'green light' or 'red light' is output, indicating a treaties requirements are met or not
- Automated isotope identification algorithms for low resolution detection systems
 - provide information barriers for treaty verification
 - Independent to detector resolution, efficiency

Introduction

- Certain verification treaties require information barriers

- These barriers are meant to protect sensitive state information
- Common information barriers are to obscure parts of a spectra from inspectors, require lower resolution detectors
- Information barriers present an issue for NNSA, IAEA treaty monitors
 - Abuse of information barriers could lead to material being diverted against treaty specifications
- Isotope identification algorithms for low resolution detectors provide a black box that preserves information barriers while allowing a 'green light' or 'red light' for different treaties

Methods

- (0) Custom library is generated from a master library
 - New library incorporates detector characteristics like FWHM vs energy, efficiency vs energy
- (1) Wavelet algorithm is used to detect energy peaks in spectra
 - Outputs peak channel location, peak area, and peak area uncertainty
- (2) A Bayesian algorithm is used to determine the probability an isotope in the library is in the given data
 - Assigns probabilities to combinations of isotopes
 - Factors used to assign probabilities include:
 - Percentage of library peaks identified
 - Percentage of data peaks identified
 - Peak centroid positions
 - Peak areas

NNLS fit of all local maxima Co-60 scalogram

Centroid	Energy (keV)	Area (A)	Area Uncertainty (σ_A)	σ_A/A
95.96	191.67	126307.11	422.69	0.33%
235.40	600.29	63804.96	802.32	1.26%
418.00	1108.48	5888.24	434.81	7.26%
441.01	1170.35	84947.12	513.03	0.60%
498.10	1321.77	69485.15	3368.69	4.85%
758.00	1973.37	133.80	128.06	95.70%
782.00	2030.42	565.58	147.14	26.02%
805.00	2084.60	496.03	138.94	28.01%
830.54	2144.19	258.80	61.75	23.86%
855.48	2201.81	498.36	48.24	9.68%
890.00	2280.62	26.14	33.24	127.14%
937.08	2386.35	934.01	21.83	2.34%
981.00	2483.15	28.60	31.73	110.93%

False peaks discriminated from true peaks based on the area uncertainty found \bullet from the wavelet code.

- (3) Bayesian algorithm outputs the likelihoods that single and multiple isotopes are responsible for the data

Combination probabilities from Bayesian algorithm using energy and area values that have $\sigma_A/A < 5\%$

lsotope 1	lsotope 2	Isotope 3	Probability
'Co60'	[]	[]	0.93967
'Co60'	'Pu240'	[]	0.003238
'Co60'	'Ra226'	[]	0.003202
'Co60'	'Se75'	[]	0.016823
'Co60'	'Th232'	[]	0.032402

Discussion and Next Steps

- Begin statistical analysis against large number of spectra
 - Analyze energy centroid distribution found by the wavelet code from:
 - NORM sources
 - Special nuclear material to be measured at the DAF in Nevada
- Investigate how changing detector resolution effects accuracy of the Bayesian algorithm
- Investigate alternative approaches to low resolution isotope identification • Neural networks
 - Machine learning
- Perform statistical analysis against specific treaty requirements

Conclusions and Program Relevance

• Will provide statistically sound set of tool for an automated isotope identification algorithm • The method presented can allow for partial or complete information barrier of spectra

