A Framework for the Collection, Analysis, and Verification of Next-Generation Infrasound Data

Anthony Christe

University of Hawaii at Manoa

CVT Workshop 2015
Traditional Infrasound

- Traditional infrasound arrays are fantastic, but...
 - Higher density
 - Quicker deployment

Figure: IS39 Array
Next Generation Sensors

- Reduce size, weight, power, costs
- Easy to maintain
- Ubiquitous
- Multiple ways to communicate
- Built using industry standard technologies

Figure: Infrasound App
Realm of Big Data
A single server isn’t enough

- Velocity
Realm of Big Data
A single server isn’t enough

- Velocity
- Volume
Realm of Big Data
A single server isn’t enough

- Velocity
- Volume
- Variety
Next Generation Framework

- Scalable Data Acquisition
- Monitoring / Data Discovery
- Time Synchronization
- Real-Time Analysis / Classification
- Embrace open source
Data Acquisition

- Data Acquisition
 - Extract meta-data
 - Store audio files
- Designed for the cloud
 - Akka actors for concurrency
 - Distributed

Figure: Data Acquisition
Device Health

Active devices

<table>
<thead>
<tr>
<th>Device Id</th>
<th>Last Received (UTC)</th>
<th>Min Ago</th>
<th>Location</th>
<th># Mic</th>
<th># Bar</th>
<th>Sample Rate</th>
<th>API Version</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>0197023515</td>
<td>2015/10/03 22:55 UTC</td>
<td>6383</td>
<td>36.96281, -122.00086</td>
<td>727</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000001</td>
<td>2015/10/08 09:17 UTC</td>
<td>1</td>
<td>19.72867, -156.05968</td>
<td>246515</td>
<td>2966</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000009</td>
<td>2015/10/08 06:10 UTC</td>
<td>188</td>
<td>48.24333, 16.43651</td>
<td>193364</td>
<td>31617</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000011</td>
<td>2015/10/08 09:17 UTC</td>
<td>1</td>
<td>19.72848, -156.05951</td>
<td>234902</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000012</td>
<td>2015/10/08 09:16 UTC</td>
<td>1</td>
<td>19.72863, -156.05965</td>
<td>234800</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000015</td>
<td>2015/10/08 09:16 UTC</td>
<td>2</td>
<td>19.72633, -156.05966</td>
<td>168089</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000017</td>
<td>2015/10/08 09:16 UTC</td>
<td>1</td>
<td>19.72883, -156.05986</td>
<td>176143</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000062</td>
<td>2015/10/07 02:01 UTC</td>
<td>1877</td>
<td>19.72868, -156.05066</td>
<td>56831</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000073</td>
<td>2015/10/08 09:16 UTC</td>
<td>1</td>
<td>19.72866, -156.0597</td>
<td>171957</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000074</td>
<td>2015/10/08 09:16 UTC</td>
<td>2</td>
<td>19.72866, -156.0597</td>
<td>173255</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000091</td>
<td>2015/10/08 09:16 UTC</td>
<td>1</td>
<td>19.72866, -156.05969</td>
<td>170935</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000092</td>
<td>2015/10/08 09:16 UTC</td>
<td>1</td>
<td>19.72865, -156.0597</td>
<td>154595</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1000000402</td>
<td>2015/10/08 09:16 UTC</td>
<td>1</td>
<td>21.29748, -157.81604</td>
<td>87396</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1590000101</td>
<td>2015/10/08 09:17 UTC</td>
<td>1</td>
<td>19.72869, -156.05967</td>
<td>175424</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1590000102</td>
<td>2015/10/08 09:16 UTC</td>
<td>1</td>
<td>19.72867, -156.05969</td>
<td>179165</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
<tr>
<td>1590000103</td>
<td>2015/10/08 09:16 UTC</td>
<td>1</td>
<td>19.72867, -156.0597</td>
<td>175520</td>
<td>0</td>
<td>80</td>
<td>800</td>
<td>Details</td>
</tr>
</tbody>
</table>
Interactive Data Discovery
Time Synchronization

- C++ websocket server
- Constructed message exchange algorithm
- All data is synchronized to master clock
- Relative accuracy 1 ms

Figure: Raspberry Pi
Head in the Clouds

- Distributed real-time analysis
 - Apache Spark & Spark Streaming
 - Python w/ obspy, scipy, numpy
- Real time event reporting
- Collaboration with LLNL
 - Signature classification
 - Data quality / verification
- Everything is a data source
Questions?