INL and the Consortium for Verification Technology

INL Support in FY2015 and Capabilities and Resources for Future Support

October 2015

David Chichester, Distinguished Staff Scientist
Nuclear Nonproliferation Division
National & Homeland Security Science and Technology Directorate
Our Mission
Discover, demonstrate and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure.

Our Vision
INL will change the world's energy future and secure our critical infrastructure.
Idaho National Laboratory

- ~3800 employees
- 890 square miles
- 111 miles of electrical distribution lines
- 579 buildings
- 177 miles of paved roads
- 14 miles of railroad lines
- 4 reactors
- Mass transit system
- Protective security force
- Multiple irradiated-fuel storage pools
- Dry-cask fuel storage research testbed
CVT Activities at INL – Infrasound

• In May INL hosted Dr. Milton Garces and Mr. Anthony Christie of the University of Hawaii, Manoa, for a week-long scoping study exploring the infrasound signatures present at nuclear facilities.

• Acoustic observations were taken across the INL site including:
 − Advanced Test Reactor (research reactor)
 − Hot Fuel Examination Facility (hot cell)
 − Analytical Laboratory (a radiochemistry laboratory with hot cells and glove boxes)

• Work is underway examining the potential use of this type of data for verification; further observations are planned.
CVT Activities at INL – Fast-Neutron Multiplicity Analysis

- In August INL hosted Dr. Angela Di Fulvio of the University of Michigan for a week-long experiment campaign at INL’s ZPPR facility
- Two types of clad plutonium plates
 - 110.7-g Pu, 72.0% \(^{239}\text{Pu}\)
 - 105.3-g Pu, 93.9% \(^{239}\text{Pu}\)
- 16-channels of data

Detection for Nuclear Nonproliferation Group
CVT Summer Interns at INL

Daniel Shy
- U. Michigan
- Optimization of inorganic scintillator detectors to improve gamma-ray spectroscopic performance
- Development of spectral deconvolution methods interpreting gamma-ray spectra

Charles Sosa
- U. Michigan
- Optimization of organic scintillator detectors to improve neutron/gamma-ray pulse shape discrimination (PSD)
- Evaluation of optimal waveform digitization parameters to maximize PSD performance of organic scintillators

White-water rafting on the Snake River, August, 2015

PSD-focused optimization aimed at further separating neutron and gamma-ray signals
INL Capability Alignment with the CVT Thrust Areas

<table>
<thead>
<tr>
<th>Thrust Areas</th>
<th>Sub Areas</th>
<th>INL Staff</th>
<th>INL Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Characterizing Gaps & Emerging Challenges</td>
<td>FMCT Verification Challenges</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Future Disarmament Treaties</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2: Fundamental Physical Data, Data Acquisition &</td>
<td>Physics of Fission</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Analysis Techniques</td>
<td>Data Analytics</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>Data Acquisition for High-Throughput Radiation Detector Systems</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3: Advanced Safeguards Tools for Accessible</td>
<td>Neutron Multiplicity Counting</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Facilities</td>
<td>Handheld/Portable Room Temp. Semiconductor γ-Ray Imagers</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Stand-off Meas. using LIBS for Limited Access Areas</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Chain-of-Custody Detectors</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4: Detection of Undeclared Activities and</td>
<td>Seismic Signatures</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Inaccessible Facilities</td>
<td>Infrasound Signatures</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Atmospheric Radionuclide Sensing</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Signatures from Undeclared Fuel-Cycle Facilities</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5: Disarmament Verification</td>
<td>Rad. Detection Systems for Arms Control & Treaty Verification</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Warhead Dismantlement Facility & Managed-Access Simulator</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Zero-Knowledge Neutron-based Verification System</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Limited Knowledge Transmission NRF</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6: Education & Outreach</td>
<td>Multiple</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
INL Research Staff Interests Aligned with the CVT

- Automated, information-barrier software for assessing gamma-ray spectra for CTBT on-site inspections
 PI: Gus Caffrey TA: 1, 5, & 6

- Study of nontraditional signatures and observables associated with reprocessing LWR fuel; evaluation of forensic signatures from LWR fuel
 PI: Kevin Carney TA: 1, 4, & 6

- Development of passive and active interrogation methods for characterizing assemblies of SNM for safeguards, arms control, and treaty verification
 PI: David Chichester TA: 1, 2, 3, 5, & 6

- Methods and instrumentals for ultra-trace mass and radiochemical analyses and the production of reference materials
 PI: Matt Watrous TA: 1, 4, & 6
Potential INL Resource Support for the CVT

Working with Bulk SNM (Thrust Areas: 1, 2, 3, 5, & 6)

Active interrogation & multiplicity counting for SNM detection and characterization

U & Pu Processing Facilities (Thrust Areas: 1, 3, 4, & 6)

Hot-cell facilities processing irradiated fuel; U and Pu radio-chemistry

Explosives Test Range (Thrust Areas: 4)

Large explosives test range supporting outdoor RDD detonation events

Radiation Imager Trials (Thrust Areas: 3 & 5)

Assessing imaging systems for arms control and emergency response (example data from an ORNL system)

PUREX Pilot Plant (Thrust Areas: 1, 2, 4, & 6)

Engineering-scale solvent extraction pilot plant for non-proliferation R&D