Correlations in Prompt Neutrons and Gamma Rays from Fission

S. A. Pozzi1, B. Wieger1, M. J. Marcath1, S. Ward1, J. L. Dolan1, T. H. Shin1, S. D. Clarke1, M. Flaska1, E. W. Larsen1, A. Enqvist2, R. Vogt3,4, J. Randrup5, R. C. Haight6, P. Talou6, T. Kawano6, I. Stetcu6, E. Padovani7

1Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA
2University of Florida, Gainesville, FL, USA
3Lawrence Livermore National Laboratory, Livermore, CA, USA
4University of California, Davis, CA, USA
5Lawrence Berkeley National Laboratory, Berkeley, CA, USA
6Los Alamos National Laboratory, Los Alamos, NM, USA
7Department of Energy, Polytechnic of Milan, Milan, Italy
Motivation

- Nuclear nonproliferation and safeguards applications require improved models for physics of nuclear fission and detector response.
- Specifically, the correlated neutron and gamma ray emission properties of important nuclear isotopes such as 235U and 239Pu are not well known. These data are important in nuclear safeguards and nonproliferation.
- A past DOE – NEUP project has led to a successful measurement campaigns at LANSCE for the measurement of the 235U fission neutron spectrum (without information on angular distribution or multiplicity).
- The present work builds on that experience and includes correlated information.
Nuclear Fission

• Neutrons emitted in the direction of motion of the fission fragment (FF) have the FF momentum added to their energy.
Nuclear Fission Modeling

• The multiple variables associated with nuclear fission are sampled independently by most Monte Carlo codes
• Theoretical research is underway at LANL and LLNL to develop models between fission-particle correlations
• Active collaboration is underway to verify these models with our own code MCNPX-PoliMi
Spontaneous Fission Measurements

252Cf Measurements at UM

Compared to theory results from LLNL/LBNL using FREYA (symbols) (Vogt and Randrup)
Spontaneous Fission Measurements

Pu Metal Samples at JRC, Ispra Italy

- A prototype fast-neutron multiplicity counter was tested at JRC, Ispra in 2013
- 1.63 g of $^{240}\text{Pu}_{\text{eff}}$ was measured with 1-cm of lead shielding and a 70 keVee threshold

Increasing the detection threshold increases the observed anisotropy
Induced-Fission Measurements

LANSCE Facility at LANL

- WNR - fast neutron source
- Ultracold neutron source
- Lujan center - moderated neutron source

Diagram Details
- **L = 21.5 m**
- PPAC centered on 18' x 18' floor over 7' deep "get-lost" basement
Induced Fission Experiments

\(^{235}U \) Fission Chamber

- A double-TOF experiment was performed using a LLNL-designed \(^{235}U \) fission chamber
- The total measurement was 1.5 weeks of on the WNR-15L beamline
- A total of \(2.6 \times 10^7 \) fissions were observed
Neutron-Gamma-ray Correlations

Scintillator Array at UM

- Inorganic scintillators have been incorporated to improve gamma-ray efficiency and spectroscopy
- This improved array provides a range of correlated measurables
 - Number of detected neutrons and number detected photons
 - Photon PHD as a function of the number of detected neutrons
 - Neutron PHD as a function of the number of detected photons
 - Neutron spectrum from TOF as a function of the number of detected photons
Neutron-Gamma-ray Correlations

- Approximately 15 TB have been acquired to date
- Analysis of these data is underway to extract the relevant correlations
Summary and Conclusions

- Advanced verification system could rely on detailed correlated emissions from fission
- Accurate models are necessary to effectively design such systems
- Measurements of correlated, prompt emissions from 252Cf, 240Pu, and 235U have been performed
 - Neutron-neutron, neutron-gamma-ray correlations
 - Experimental results used to validate codes: MCNPX-PoliMi treatments are more physical than the standard MCNPX treatment
- New fission models have been implemented in MCNPX-PoliMi
 - Anisotropic neutron emission from fission
 - Multiplicity-dependent neutron energy spectra
Correlations in Prompt Neutrons and Gamma Rays from Fission

S. A. Pozzi1, B. Wieger1, M. J. Marcath1, S. Ward1, J. L. Dolan1, T. H. Shin1, S. D. Clarke1, M. Flaska1, E. W. Larsen1, A. Enqvist2, R. Vogt3,4, J. Randrup5, R. C. Haight6, P. Talou6, T. Kawano6, I. Stetcu6, E. Padovani7

1Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA
2University of Florida, Gainesville, FL, USA
3Lawrence Livermore National Laboratory, Livermore, CA, USA
4University of California, Davis, CA, USA
5Lawrence Berkeley National Laboratory, Berkeley, CA, USA
6Los Alamos National Laboratory, Los Alamos, NM, USA
7Department of Energy, Polytechnic of Milan, Milan, Italy