

Thrust Area 5: Disarmament Verification Overview Richard Lanza MIT

Thrust Area 5: Disarmament Verification

Zero Knowledge NRF

ZK Neutron Radiography

Information Barriers for Enhanced Automated Isotope Identification S. Kemp, MIT

F. D'Errico, Yale

C. Sullivan, UI

Zero Knowledge Using NRF

Scott Kemp MIT

Motivation for Warhead Verification

Project CloudGap (1968): Even rudimentary measurements leak classified information

Temporary Solution: No warhead verification

Re-armament stability under crisis & loose nukes addressed only by verified warhead elimination

How to do it?

Provenance + unclassified measurements?

Electronic Information Barriers + templates? Disc o' Doom!

Electronic Information Barriers + attributes? Low selectivity. Currently favored approach.

And now for something completely different...

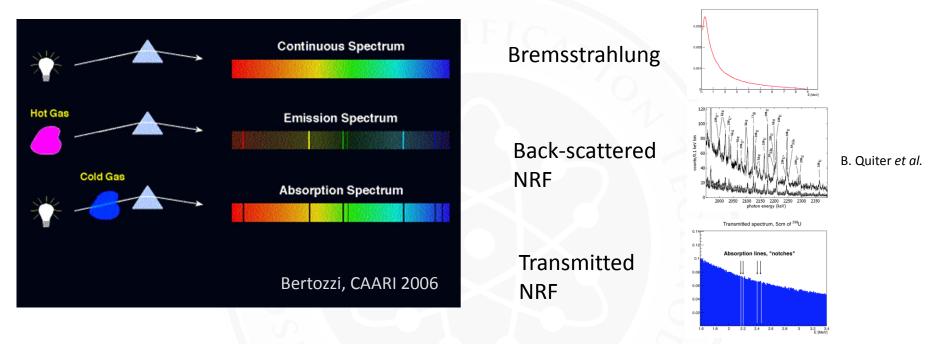
Zero Knowledge proofs (Goldwasser) can be used to prove warhead authenticity (Glaser).

A ZK proof demonstrates something is true without revealing why.

Any proof requires soundness & completeness. We further impose a zero-knowledge condition.

The MIT Team

- Areg Danagoulian NSE **EECS/CSAIL** John Fisher Shafi Goldwasser **EECS/CSAIL** NSE Zach Hartwig Scott Kemp NSE Richard Lanza NSE
- 1 PhD, 2 MS, and 2 UG students

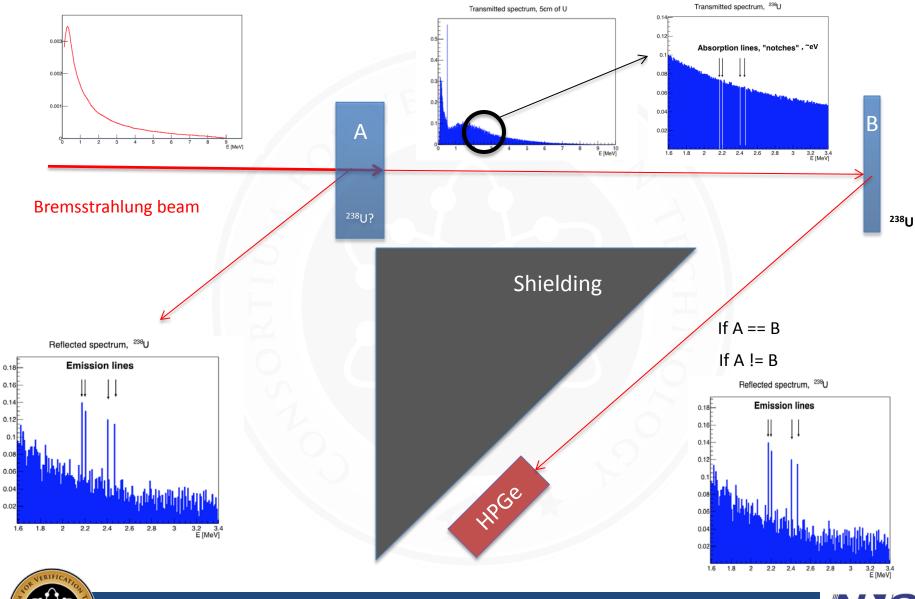


Analogy: NRF to Optical Spectrometry

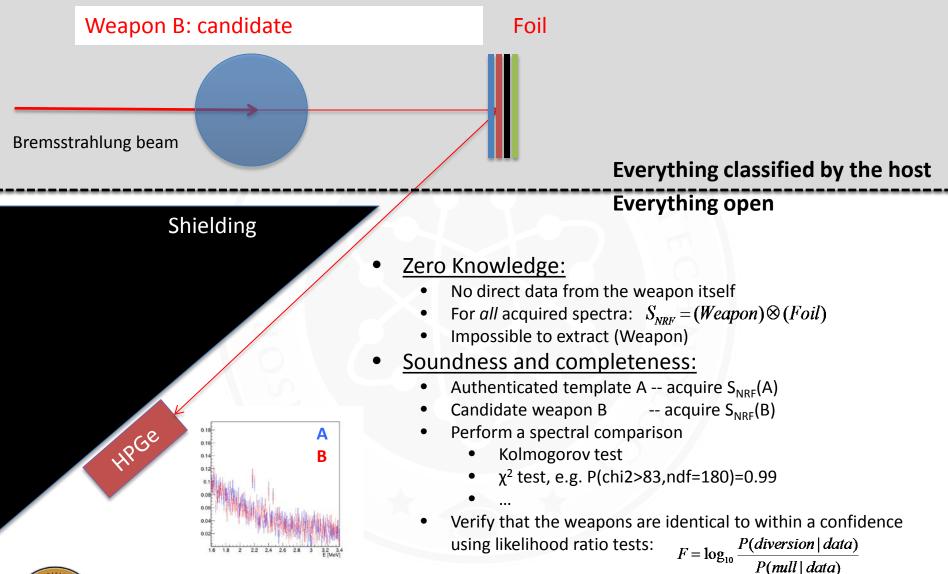
Optical Spectroscopy

NRF Spectroscopy

- Follows Breit-Wigner distribution for a resonance, widths of ~10meV
- Thermal Doppler effects widen to $\Delta = E_c \sqrt{kT/M} \sim eV$


 $\sigma(E) = \frac{2J_1 + 1}{2J_0 + 1} \frac{1}{4} \lambda_0^2 \frac{\Gamma_0}{\Gamma} \frac{\Gamma_i}{\sqrt{\pi}\Delta} \exp\left\{-\left[(E - E_r)/\Delta\right]^2\right\}$ J. C. PALATHINGAL and M, L. WIEDENBECK, 1969

Consortium for Verification Technology: Kick-Off Workshop - October 16th & 17th, 2014


NRF: backscattered and reference foil

Kick-Off Workshop - October 16th & 17th, 2014

Consortium for Verification Technology:

NRF Weapon authentication: ConOps

Going Forward: Policy Research

- What characteristics of the weapon really matter?
- How much resolution is tolerable?
- Political restraints on verification protocol

Going Forward: Nuclear Science

- Geant4 simulations of (U, Pu, C, Fe, Be)
- Analytic validation of G4NRF class (Jordan et al.)
- Analyze notch refill from Compton scattering. How does it affect analyzing power?
- Simulate operational scenarios, determine detection probability and false positive prob:
 - Two identical weapons. What's the FP of the decision algorithm?
 - Introduce a difference Δ . What's the dependence of DP on Δ ?
 - What's the optimal foil composition?
- Test various decision algorithms for detecting a diversion and clearing a null

Going Forward: Experimental Work

- Build a prototype
 - 4 HPGe detectors
 - 3MeV Van de Graaf at MIT HVRL, possibly another CW machine?
- Acquire NRF data,
 - Perform data driven validations of G4NRF module
 - use that to perform basic validation of the NRF in Geant4.
- Perform tests of the ConOps with various surrogates, e.g. ~100 g/cm² of ²³⁸U.

