Thrust Area 2: Fundamental physical data acquisition and analysis

Alfred Hero
Depts of EECS, BME, Statistics
University of Michigan
Thrust II personnel

- Alfred Hero (UM EECS/BME/STATS): Event correlation and anomaly detection
- John Fisher (MIT CSAIL): dynamic graphical models
- Lawrence Carin (Duke ECE): compressive sensing for high-dimensional data
- Sara Pozzi/Shaun Clarke (UM NERS): physics of fission
- John Mattingly (NCSU NE): High-throughput radiation detection systems
Thrust II personnel (ctd)

- Funded by CVT
 - Elizabeth Hou (UM STATS): CVT Fellow (poster)
 - Charles Sosa (UM NERS), CVT Fellow (poster)
 - David Carlson (Duke ECE), CVT Fellow
 - Sue Zheng (MIT CSAIL), CVT Fellow*
 - Yassin Yilmaz (UM EECS): post-doctoral fellow (poster)
 - Taposh Banerjee (UM EECS): post-doctoral fellow (poster)
 - Angela Di Fulvio (UM NERS), post-doctoral fellow funded
 - Xuejun Liao (Duke ECE), post-doctoral fellow
 - Oren Freifeld (MIT CSAIL), post-doctoral fellow*

- Funded from non-CVT sources
 - Tony Van (UM STATS): M.S. student (poster)
 - Matthew Marcath (UM NERS), Ph.D candidate (poster)
 - Tony Shin (UM NERS), M.S. student
 - Steve Ward (UM NERS), M.S. student
Thrust II Kickoff Presentations

Oral presentations

• “Fundamental physical data acquisition and analysis,” Al Hero (UM)
• “Convolutional dictionary learning and feature design,” Larry Carin (Duke)
• “Graphical models for query-driven analysis of multimodal data,” John Fisher (MIT)
• “Correlations in prompt neutrons and gamma rays from fission,” Shaun Clarke (UM)
• “Data compression and analysis methods for high-throughput Detector Systems,” John Mattingly (NCSU)

Also see our Thrust II poster presentations
Multi-layered data acquisition

Standoff verification layer

Context info
- ISR
- Public data
- Shipping/Rcv

Sensing modes
- Reports
- Newsfeeds
- Event tagging
- Social media
- Blogs
- Microblogs

On site verification layer

Inputs
- Site visits
- Utilities usage

Facility

Outputs
- Emissions
- Sensing modes
 - Power meter
 - Flow rates
 - Webcams

MASINT
- Satellite RS
- Flyby sensors
- Earthbased RS

Sensing modes
- EO/SAR/IR
- Hyperspectral
- Radio Freq.
- X-ray/gamma
- Infrasound
- Seismic

Sensing modes
- Neutron det
- γ imaging
- Chemical det
Consortium for Verification Technology: Kick-Off Workshop

October 16th & 17th, 2014

Data acquisition and sampling
Feature representation
Statistical machine learning

High Dimensional Data

Anomaly detection
Event correlation
Graph analytics
Convolutional Bayes networks
Multimodal fusion

Analysis/Inference

Domain info
Value of Info

Statistical machine learning
Feature representation
Data acquisition and sampling

Error control
Budget

α

TSP’11, Sensors ’11, TIT ’13, PNAS 06, JCB ’09...

JASA ’11, TIT ’12, NIPS ’06,’11...

Value of Info

TSP’11, Sensors ’11, ...

Shipping+Receiving
Manifests
Physical Ingress/Egress
(Utility/Emissions/Internet)
Satellite imagery
Seismic traces

Shipping Manifest

ACME Trading Company
Event correlation and anomaly detection

• Challenges
 – Sensors are highly distributed and asynchronous
 • Large standoff: satellite EO/IR imaging, SAR, RF, seismic, ISR
 • On-site: utility monitoring, surveillance, radionuclide detectors, emissions, outflows
 – Information sources are diverse
 • Video, images, waveforms, text
 – Event correlation at different time/space scales
 – Incipient changes may be barely detectable
Event correlation and anomaly detection

• Elements of our approach
 – Statistical hierarchical modeling of heterogeneous event streams
 – Correlation mining with constraints on communication/computation/timeliness
 – Fundamental performance limits and benchmarks

• Application areas
 – Human-aided anomaly detection
 – Event-driven compressive sampling
 – Quickest change detection
 – Distributed event correlation

• See our poster today for details on these areas
Correlation mining

Network of sensors measures spatio-temporal random field

- Are any of the streams correlated over space or time?
- Are there interesting patterns of correlation?
- Have these patterns changed recently wrt a baseline?
- How much data is required to answer these questions?
The problem of false alarms

Network of sensors measures spatio-temporal random field

- Event detection: a pattern of correlation between sensors exceeds a threshold ρ
- Question: What is minimum required number n of samples to correlate information from p different sensors?
- Answer: Can determine from critical phase transition threshold [1]

The problem of false alarms

• When correlation matrix is sparse there is phase transition

\[\rho_c = \pm 0.34 \]

\[\rho_c = \pm 0.63 \]

\[\rho_c = \pm 0.89 \]

• Phase transition encountered as decrease the threshold \(\rho \)
• Critical phase transition threshold \(\rho_c \) increases in \(n \) and \(p \) [1]

\[
\rho_c = \sqrt{1 - c_n(p - 1)^{-2/(n-4)}}
\]

Phase transition chart

PHASE TRANSITION THRESHOLD

Critical threshold $p_{c,\delta}$ vs. number of observations n for different hub degrees:

- Hub degree ≥ 1
- Hub degree ≥ 2
- Hub degree ≥ 3

$p=10000000000$
$p=10000$
$p=10$

Desired correlation level

Hub degree ≥ 1
Hub degree ≥ 2
Hub degree ≥ 3

PHASE TRANSITION THRESHOLD

\[p = \begin{align*} &10^{10}0000000000 \\ &100000 \\ &10 \end{align*} \]

Spatio-temporal correlation mining

- Wind speed data (1948-2012)
- 100 stations 10x10 grid
- 2-day time windows (8 sample snapshots)
- Period: 2001 to 2007
- p=100, q=8, n=224

Kronecker PCA: \[C = \sum_i A_i \otimes B_i \]

Kronecker vs ordinary PCA

- Sample cov C
- K-PCA Approx

\[A_1 \] (Temporal)
\[B_1 \] (Spatial)

Conclusions

• Analysis team brings expertise from the areas of
 – Statistical machine learning and graphical models
 – Anomaly detection, quickest detection and correlation mining
 – Compressive sensing and dictionary learning
 – Physical models and their simulation
• Fundamental limits and algorithms and models are equally important.
• See our poster today:

 “Event correlation and anomaly detection,” Elizabeth Hou, Yasin Yilmaz, Tony Van, Taposh Banerjee, Al Hero