

Thrust Area 2: Fundamental physical data acquisition and analysis

Alfred Hero Depts of EECS, BME, Statistics University of Michigan

Thrust II personnel

- Alfred Hero (UM EECS/BME/STATS): Event correlation and anomaly detection
- John Fisher (MIT CSAIL): dynamic graphical models
- Lawrence Carin (Duke ECE): compressive sensing for high-dimensional data
- Sara Pozzi/Shaun Clarke (UM NERS): physics of fission
- John Mattingly (NCSU NE): High-throughput radiation detection systems

Thrust II personnel (ctd)

- Funded by CVT
 - Elizabeth Hou (UM STATS): CVT Fellow (poster)
 - Charles Sosa (UM NERS), CVT Fellow (poster)
 - David Carlson (Duke ECE), CVT Fellow
 - Sue Zheng (MIT CSAIL), CVT Fellow*
 - Yassin Yilmaz (UM EECS): post-doctoral fellow (poster)
 - Taposh Banerjee (UM EECS): post-doctoral fellow (poster)
 - Angela Di Fulvio (UM NERS), post-doctoral fellow funded
 - Xuejun Liao (Duke ECE), post-doctoral fellow
 - Oren Freifeld (MIT CSAIL), post-doctoral fellow*
- Funded from non-CVT sources
 - Tony Van (UM STATS): M.S. student (poster)
 - Matthew Marcath (UM NERS), Ph.D candidate (poster)
 - Tony Shin (UM NERS), M.S. student
 - Steve Ward (UM NERS), M.S. student

Consortium for Verification Technology: Kick-Off Workshop - October 16th & 17th, 2014

Thrust II Kickoff Presentations

Oral presentations

- "Fundamental physical data acquisition and analysis," Al Hero (UM)
- "Convolutional dictionary learning and feature design," Larry Carin (Duke)
- "Graphical models for query-driven analysis of multimodal data," John Fisher (MIT)
- "Correlations in prompt neutrons and gamma rays from fission," Shaun Clarke (UM)
- "Data compression and analysis methods for high-throughput Detector Systems," John Mattingly (NCSU)

Also see our Thrust II poster presentations

Consortium for Verification Technology: Kick-Off Workshop - October 16th & 17th, 2014

Multi-layered data acquisition

Event correlation and anomaly detection

- Challenges
 - Sensors are highly distributed and asynchronous
 - Large standoff: satellite EO/IR imaging, SAR, RF, seismic, ISR
 - On-site: utility monitoring, surveillance, radionuclide detectors, emissions, outflows
 - Information sources are diverse
 - Video, images, waveforms, text
 - Event correlation at different time/space scales
 - Incipient changes may be barely detectable

Event correlation and anomaly detection

- Elements of our approach
 - Statistical hierarchical modeling of heterogeneous event streams
 - Correlation mining with constraints on communication/computation/timeliness
 - Fundamental performance limits and benchmarks
- Application areas
 - Human-aided anomaly detection
 - Event-driven compressive sampling
 - Quickest change detection
 - Distributed event correlation
- See our poster today for details on these areas

Correlation mining

Network of sensors measures spatio-temporal random field

20 sensors in a random field

Time index

- Are any of the streams correlated over space or time?
- Are there interesting patterns of correlation?
- Have these patterns changed recently wrt a baseline?
- How much data is required to answer these questions?

The problem of false alarms

Network of sensors measures spatio-temporal random field

20 sensors in a random field

Thresholded correlation

Correlation network

- Event detection: a pattern of correlation between sensors exceeds a threshold ρ
- Question: What is minimum required number n of samples to correlate information from p different sensors?
- Answer: Can determine from critical phase transition threshold [1]

Consortium for Verification Technology: Kick-Off Workshop - October 16th & 17th, 2014

[1] A.O. Hero and B. Rajaratnam, "Large Scale Correlation Screening," JASA, 2011

The problem of false alarms

• When correlation matrix is sparse there is phase transition

- Phase transition encountered as decrease the threshold ho
- Critical phase transition threshold ρ_c increases in n and p [1]

$$\rho_c = \sqrt{1 - c_n(p-1)^{-2/(n-4)}}$$

Consortium for Verification Technology: Kick-Off Workshop - October 16th & 17th, 2014

[2] A.O. Hero and B. Rajaratnam, "Large Scale Correlation Screening," JASA, 2011

Phase transition chart

[3] A.O. Hero and B. Rajaratnam, "Hub screening," IEEE Trans. Info Theory, 2012

Phase transition chart

Spatio-temporal correlation mining

Conclusions

- Analysis team brings expertise from the areas of
 - Statistical machine learning and graphical models
 - Anomaly detection, quickest detection and correlation mining
 - Compressive sensing and dictionary learning
 - Physical models and their simulation
- Fundamental limits and algorithms and models are equally important.
- See our poster today:

"Event correlation and anomaly detection," Elizabeth Hou, Yasin Yilmaz, Tony Van, Taposh Banerjee, Al Hero

