Approved for public release; distribution is unlimited.

INL and the Consortium for Verification Technology

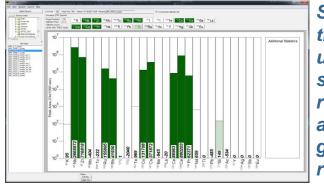
A Brief Overview of Potential INL Capabilities and Resources to Support NNSA's CVT

October 2014

David Chichester, Distinguished Staff Scientist Nuclear Nonproliferation Division National & Homeland Security Science and Technology Directorate

www.inl.gov

INL Capability Alignment with the CVT Thrust Areas


Thrust Areas	Sub Areas	INL Staff	INL Resources
1: Characterizing Gaps & Emerging Challenges	FMCT Verification Challenges	\checkmark	✓
	Future Disarmament Treaties	\checkmark	✓
2: Fundamental Physical Data, Data Acquisition & Analysis Techniques	Physics of Fission	\checkmark	*
	Data Analytics	\checkmark	*
	Data Acq. for High-Throughput Rad. Detector Systems	\checkmark	\checkmark
3: Advanced Safeguards Tools for Accessible Facilities	Neutron Multiplicity Counting	\checkmark	\checkmark
	Handheld/Portable Room Temp. Semiconductor g-Ray Imagers	\checkmark	\checkmark
	Stand-off Meas. using LIBS for Limited Access Areas	\checkmark	\checkmark
	Chain-of-Custody Detectors	\checkmark	\checkmark
4: Detection of Undeclared Activities and Inaccessible Facilities	Seismic Signatures	x	\checkmark
	Infrasound Signatures	x	\checkmark
	Atmospheric Radionuclide Sensing	\checkmark	\checkmark
	Signatures from Undeclared Fuel-Cycle Facilities	\checkmark	\checkmark
5: Disarmament Verification	Rad. Detection Systems for Arms Control & Treaty Verification	\checkmark	\checkmark
	Warhead Dismantlement Facility & Managed-Access Simulator	\checkmark	\checkmark
	Zero-Knowledge Neutron-based Verification System	\checkmark	\checkmark
	Limited Knowledge Transmission NRF	\checkmark	\checkmark
6: Education & Outreach	Multiple	\checkmark	\checkmark

INL Research Staff Interests Aligned with the CVT

- Development of automated, informationbarrier software for assessing gamma-ray spectra for CTBT on-site inspections
 PI: Gus Caffrey; TA: 1, 5, & 6
- Study of nontraditional signatures and observables associated with reprocessing light-water reactor (LWR) fuel; evaluation of forensic signatures from LWR fuel
 PI: Kevin Carney; TA: 1, 4, & 6
- Development of passive and active interrogation methods for characterizing assemblies of SNM for safeguards, arms control, and treaty verification
 PI: David Chichester; TA: 1, 2, 3, 5, & 6
- Development of methods and instrumentals for ultra-trace mass and radiochemical analyses and the production of reference materials

PI: Bob Hague; TA: 1, 4, & 6

Screen shot of the OSIRIS user interface, showing results of allowed gamma-ray results

Disassembly of an LWR fuel pin at INL for follow-on radiochemical analyses

Source-assisted multiplicity counting to determine multiplication, M, of an assembly of HEU

Potential INL Resource Support for the CVT

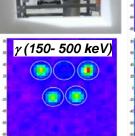
Working with Bulk SNM (Thrust Areas: 1, 2, 3, 5, & 6)

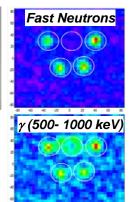
Active interrogation & multiplicity counting; assaying SNM in a storage container

U & Pu Processing Facilities (Thrust Areas: 1, 3, 4, & 6)

Multiple hot-cell facilities processing spent fuel; separating U, HEU, and Pu; downblending HEU

Explosives Test Range (Thrust Areas: 4)




A 10-acre explosives test range supporting events with a max. charge weight of 20,000 lbs. TNT equivalent

Radiation Imager Trials (Thrust Areas: 3 & 5)

PUREX Pilot Plant (Thrust Areas: 1, 2, 4, & 6)

Engineering scale solvent extraction pilot plant for nonproliferation R&D