

Project Overview

- Pulse-shape-discrimination (PSD) systems used with some scintillators to can between neutrons discriminate and gammas
- The motivation behind this work is to quantify the best PSD system that most accurately discriminates
- The PSD performance of a digital, chargeintegration PSD system (CAEN V1720) is compared against an analog, zerocrossing PSD system (Mesytec MPD-4).
- Measurements were performed using an scintillator (EJ-309) liquid organic coupled with a photo-multiplier tube (ETL-9821B).
- A Cf-252 spontaneous-fission source was used to provide neutrons and gammas.
- Figures of merit (FOM) were used to assess and compare the performance of the PSD systems
- Under the measurement constraints, digital PSD system out-performed analog PSD by approximately 15%.

Background

Figure.1: Digital charge integration PSD

FOM = -FWHM_{gamma} + FWHM_{neutron}

Parameter	Value	
WALK (influences curvature of clusters at low	100	
energies)	(default)	
THRESHOLD (serves as an energy cut-off)	0	
GAIN (influences curvature of clusters at high energies)	0	
QWIN (affects walk parameter, manual suggests	100	
to avoid adjusting)	(default)	
NDIS (moves TAC values up and down for discrimination purposes in fast mode (0.91V))	183	

A Comparison of Analog and Digital Pulse-Shape-Discrimination Systems for Organic-Liquid Scintillators

Charles Sosa (PhD Candidate), Dr. Marek Flaska and Dr. Sara Pozzi **Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109**

(i.e., tail to total integral values) **Future Work**

The V1720 outperformed the MPD4 by 15% and future work will include using a larger dynamic range (8V instead of 2V)

Acknowledgements

This work was supported by the National Science Foundation and the Domestic Nuclear Detection Office of the Department of Homeland Security through the Academic Research Initiative Award # CMMI 0938909.

shown in the top row and PSD separation images shown in the bottom row. Analog PSD separation was done using a histogram of TAC values while digital PSD separation was done using a histogram of the ratio values

