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Motivation 
Nuclear Nonproliferation and Safeguards 

• Improved models of nuclear fission would benefit 
nuclear nonproliferation and safeguards 
applications. 

• Specifically, the correlated neutron and gamma ray 
emission data for important isotopes such as U-235 
and Pu-239 are not well known. 

• There is a need for experimental data to compare to 
fission models under development. 

• Key neutron and gamma ray quantities to measure: 

– Detected multiplicity 

– Energy spectra 

– Relative angle of emission 
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Nuclear reactor fuel 
bundles 

Uranium hexafluoride 
containers 

Canberra AWNCC 
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Nuclear Fission 
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Fast-neutron multiplicity counter 

http://www.int.washington.edu/talks/WorkShops/int_13_3/ 

Neutron emission 

Gamma-ray emission 

Neutron and gamma-ray correlations 
arise from the transition from neutron to 
gamma-ray emission. 
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• Research is underway to develop models that exhibit fission-particle correlations.  

• CGMF (LANL) and FREYA (LLNL & LBNL) are event-by-event Monte Carlo codes. 

• Model output was integrated with MCNPX-PoliMi to enable comparison with 

measured data. 

Ongoing nuclear fission modeling 
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Fission model neutron multiplicity distributions for Cf-252. Fission model neutron spectra for Cf-252. 
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Fission model evaluation approach 
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Detection 
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This approach facilitates direct comparison of simulation and 
measurement results. 
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Neutron coincidences 
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Ratio of mean photon coincidences as a 
function of neutron coincidences from 

simulations to measurement. 

Ratio of  neutron coincidence histogram 
of simulations fission models to the 

measured. 

• Simulated results over-

estimate the number of 

measured neutron 

coincidences, except at zero. 

• Both CGMF and FREYA have 

negative correlation in energy 

and multiplicity. 
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Measurement details 
LANL Chi-Nu array with Cf-252 

• The collaboration with LANL enabled 
improved detection limits and efficiency 
over U-M measurements. 

– Larger source-detector distance  

– Larger solid angle coverage  

– Better fission timing resolution and 
trigger 
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ORNL designed Cf-252 ionization chamber. 

Chi-Nu organic liquid scintillator array of 54- 
17.78Øx5.04 EJ-309s.  

Chi-Nu array with liquid organic scintillators 
and a Cf-252 ionization chamber. 
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Measurement details 
Organic-Liquid Scintillator Characteristics 

Organic scintillators have several 
advantages for detecting SNM 
signatures 
• Nanosecond-scale response times 

• Response is proportional to the 
energy deposited 

• Good intrinsic efficiency 

• Pulse shape  
discrimination 

• Good scalability  
and low cost 
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Bare Cf-252 source with EJ-309 
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Fission 
chamber 

EJ-309 
photons 

EJ-309 neutrons 

Measured quantities 
LANL Chi-Nu array with Cf-252 

Measured quantities: 

• Pulse heights - 
energy deposited 

 

• Time of detection 

 

• Neutron energy 
from time-of-flight 

 

• Relative angle of 
emission 
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Ionization chamber and detector pulse height 
histograms. 

Detector-detector and detector-ionization chamber 
detection time difference histograms. 
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Detector characterization 
LANL Chi-Nu array with Cf-252 

• Measurement-simulation 
results rely on the ability to 
emulate detector response. 

• It is critical to understand 
the detector response. 
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Simulated efficiency of a 17.78Ø×5.08 cm EJ-309 
with a 70 keVee threshold =~0.5 MeV deposition. 

Photon pulse height histogram of a 
17.78Ø×5.08 cm EJ-309 with a 70 keVee 

threshold (~0.6 MeV deposition). 

Neutron pulse height histogram of a 
17.78Ø×5.08 cm EJ-309 with a 70 keVee 

threshold (~0.6 MeV deposition). 
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Correlated results 
LANL Chi-Nu array with Cf-252 

• Neutron-neutron 
coincidence are being 
analyzed for correlations. 

 

• CGMF and FREYA 
comparisons are ongoing. 
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Simulated neutron-neutron detection time difference histogram for 
each detector-to-detector angle. 

Neutron-neutron coincidences histogrammed by detect-to-
detector angle. 

Simulated 
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Ongoing work 
LANL Chi-Nu array with Cf-252 
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Mean detected gamma-rays as a function of coincident neutrons. 

Mean detected neutrons as a function of coincident photons. 

• Coincident neutron and 

photon detections are 

sensitive to neutron-

photon correlations. 

 

• Future work includes 

comparison to CGMF 

and FREYA simulation 

results. 
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Ongoing work 
Induced-fission measurements at WNR facility at LANSCE 

• In February 2016 at the WNR facility, U-235 induced fission neutrons and photons from a 
parallel plate avalanche chamber were measured with the Chi-Nu array. 

• 700 keV through 800 MeV inducing neutron energies. 
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WNR - fast 

neutron source 

Lujan center – 

moderated 

neutron source 

Ultracold 
neutron source 
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Conclusions 

• Measurements of correlated, prompt 
emissions from Cf-252 have been 
performed and analyzed. 

 

• Comparisons have been made of fission 
models from MCNPX-PoliMi, CGMF, and 
FREYA to experimentally measured 
correlations.  

 

• Ongoing work with Cf-252 and U-235 
measurements using the LANL Chi-Nu 
liquid organic array could improve model 
comparisons, particularly in neutron 
energy measurements. 
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U-235 parallel plate avalanche 
chamber. 

Chi-Nu array with liquid 
organic scintillators. 

Chi-Nu array with liquid organic 
scintillators and a Cf-252 ionization 

chamber. 
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Detection tools 
• EJ-309  

– Primary mechanisms of detection 

• Neutron elastic scattering on 
hydrogen 

• Photon Compton scattering 

– Time resolution 1 ns FWHM 
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• NaI(Tl)  
– Photoelectric absorption and Compton 

scattering 

– Good photon efficiency 

– Time resolution 3.5 ns at FWHM 

 

Measured tail to total plot for pulse 
shape discrimination 

Simulated EJ-309 neutron and photon 
efficiency  Simulated NaI(Tl) photon efficiency  
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