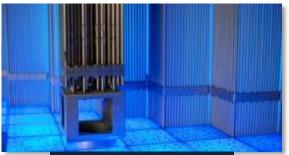
Measurement of Correlated Data from Nuclear Fission

M. J. Marcath¹, T. H. Shin¹, Angela Di Fulvio¹, S. D. Clarke¹, E. W. Larsen¹, R. C. Haight², P. Talou², S. A. Pozzi¹

¹Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA ²Los Alamos National Laboratory, Los Alamos, NM, USA

CVT Workshop - October 19, 2016

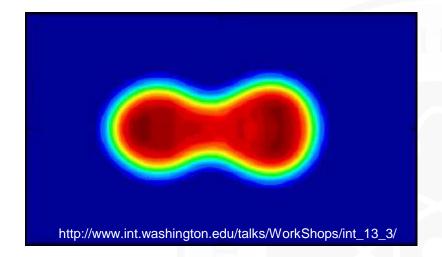

Motivation

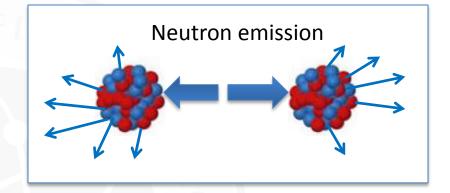
Nuclear Nonproliferation and Safeguards

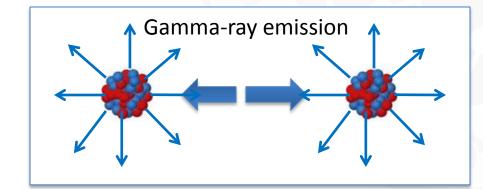
- Improved models of nuclear fission would benefit nuclear nonproliferation and safeguards applications.
- Specifically, the correlated neutron and gamma ray emission data for important isotopes such as U-235 and Pu-239 are not well known.
- There is a need for experimental data to compare to fission models under development.
- Key neutron and gamma ray quantities to measure:
 - Detected multiplicity
 - Energy spectra
 - Relative angle of emission

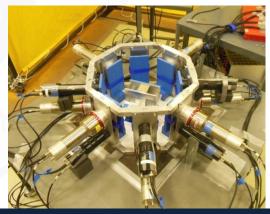
Uranium hexafluoride containers

Nuclear reactor fuel bundles

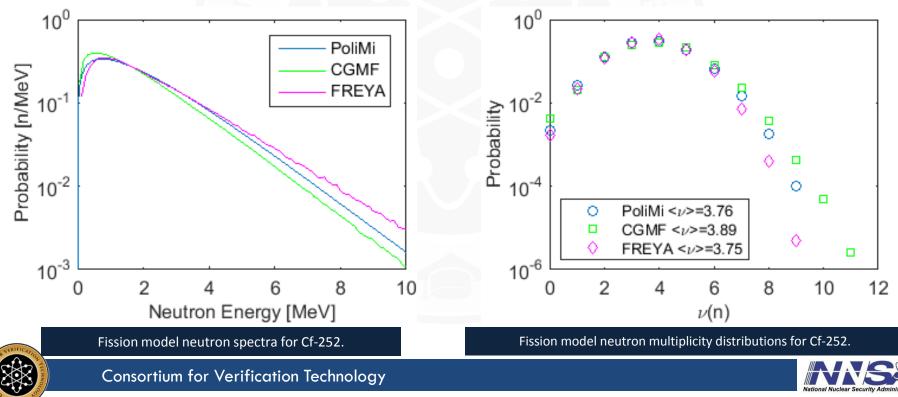



Canberra AWNCC

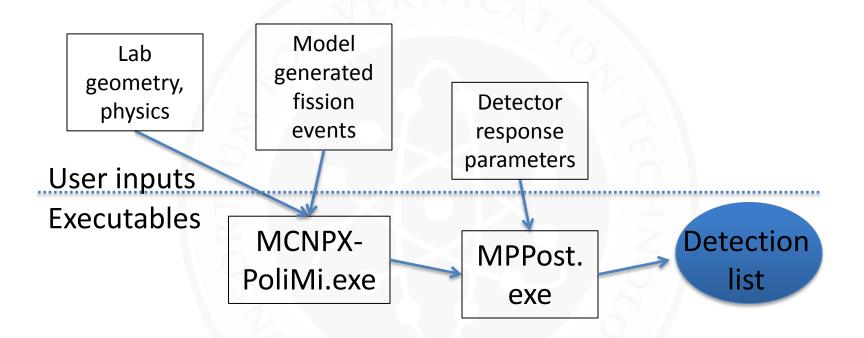



Nuclear Fission

Neutron and gamma-ray correlations arise from the transition from neutron to gamma-ray emission.



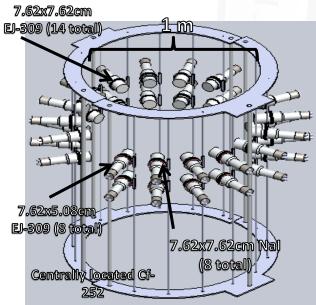
Fast-neutron multiplicity counter

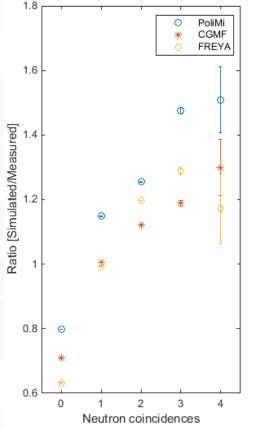


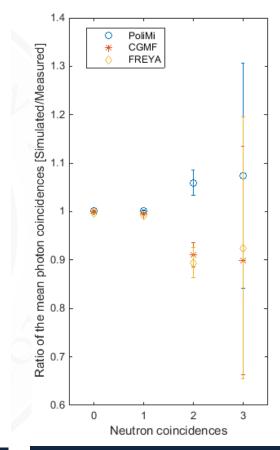
Ongoing nuclear fission modeling

- Research is underway to develop models that exhibit fission-particle correlations.
- CGMF (LANL) and FREYA (LLNL & LBNL) are event-by-event Monte Carlo codes.
- Model output was integrated with MCNPX-PoliMi to enable comparison with measured data.

Fission model evaluation approach


This approach facilitates direct comparison of simulation and measurement results.




Neutron coincidences

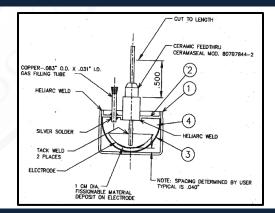
- Simulated results overestimate the number of measured neutron coincidences, except at zero.
- Both CGMF and FREYA have negative correlation in energy and multiplicity.

Ratio of neutron coincidence histogram of simulations fission models to the measured.

Ratio of mean photon coincidences as a function of neutron coincidences from simulations to measurement.

Measurement details

LANL Chi-Nu array with Cf-252



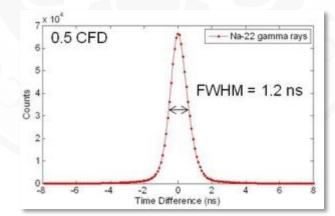
Chi-Nu array with liquid organic scintillators and a Cf-252 ionization chamber.

- The collaboration with LANL enabled improved detection limits and efficiency over U-M measurements.
 - Larger source-detector distance
 - Larger solid angle coverage
 - Better fission timing resolution and
 - trigger

17.78x5.08cm EJ-309 (54 total)

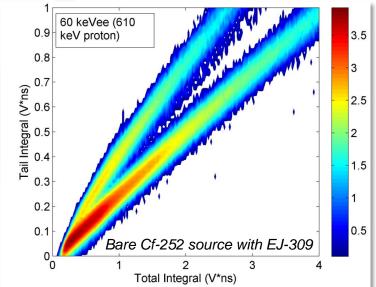
> *Chi-Nu organic liquid scintillator array of 54-*17.78Øx5.04 EJ-309s.

ORNL designed Cf-252 ionization chamber.

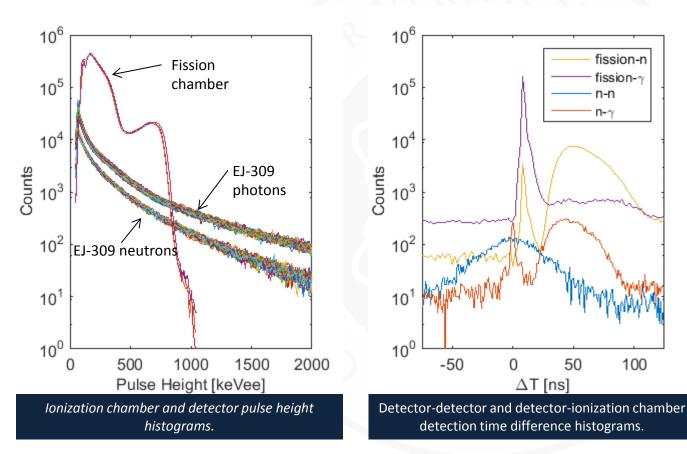

Cf-252

Measurement details

Organic-Liquid Scintillator Characteristics


Organic scintillators have several advantages for detecting SNM signatures

- Nanosecond-scale response times
- Response is proportional to the energy deposited
- Good intrinsic efficiency
- Pulse shape discrimination
- Good scalability and low cost

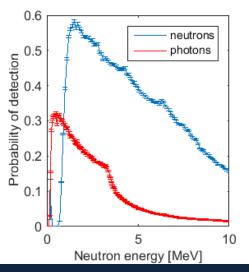


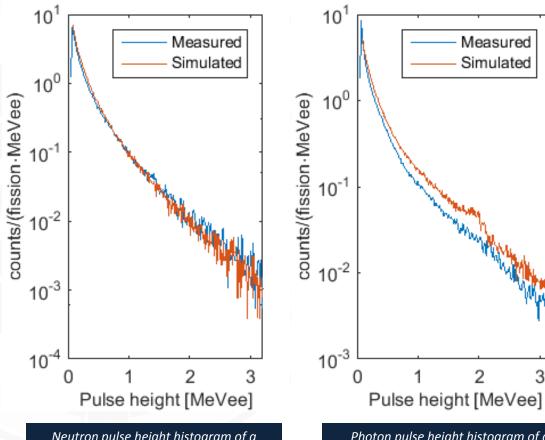
Measured quantities

LANL Chi-Nu array with Cf-252

Measured quantities:

- Pulse heights energy deposited
- Time of detection
- Neutron energy from time-of-flight
- Relative angle of emission




Detector characterization

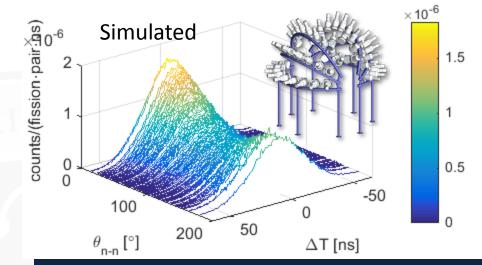
LANL Chi-Nu array with Cf-252

- Measurement-simulation results rely on the ability to emulate detector response.
- It is critical to understand the detector response.

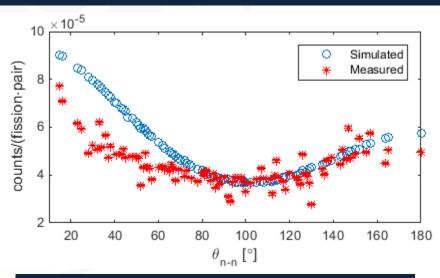
Simulated efficiency of a 17.78Ø×5.08 cm EJ-309 with a 70 keVee threshold =~0.5 MeV deposition.

Neutron pulse height histogram of a 17.78Ø×5.08 cm EJ-309 with a 70 keVee threshold (~0.6 MeV deposition).

Photon pulse height histogram of a 17.78Ø×5.08 cm EJ-309 with a 70 keVee threshold (~0.6 MeV deposition).



3

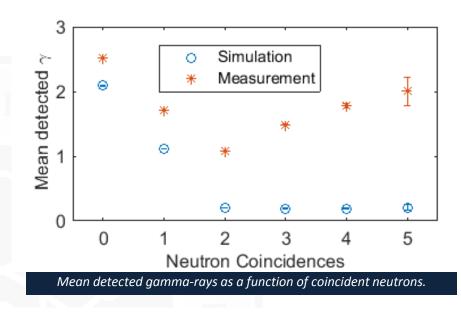

Correlated results

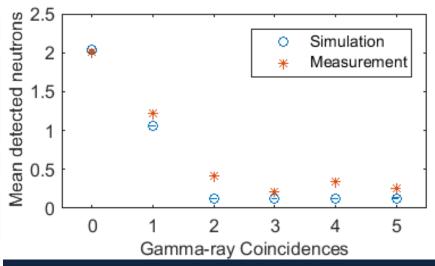
LANL Chi-Nu array with Cf-252

- Neutron-neutron coincidence are being analyzed for correlations.
- CGMF and FREYA comparisons are ongoing.

Simulated neutron-neutron detection time difference histogram for each detector-to-detector angle.

Neutron-neutron coincidences histogrammed by detect-todetector angle.



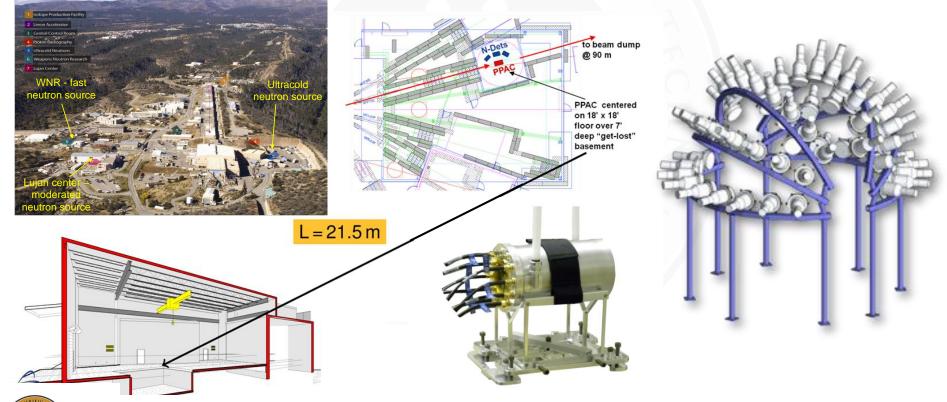


Ongoing work

LANL Chi-Nu array with Cf-252

- Coincident neutron and photon detections are sensitive to neutronphoton correlations.
- Future work includes comparison to CGMF and FREYA simulation results.

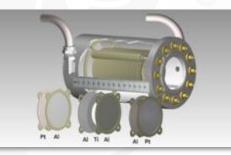
Mean detected neutrons as a function of coincident photons.



Ongoing work

Induced-fission measurements at WNR facility at LANSCE

- In February 2016 at the WNR facility, U-235 induced fission neutrons and photons from a parallel plate avalanche chamber were measured with the Chi-Nu array.
- 700 keV through 800 MeV inducing neutron energies.



Conclusions

- Measurements of correlated, prompt emissions from Cf-252 have been performed and analyzed.
- Comparisons have been made of fission models from MCNPX-PoliMi, CGMF, and FREYA to experimentally measured correlations.
- Ongoing work with Cf-252 and U-235 measurements using the LANL Chi-Nu liquid organic array could improve model comparisons, particularly in neutron energy measurements.

Chi-Nu array with liquid organic scintillators and a Cf-252 ionization chamber.

U-235 parallel plate avalanche chamber.

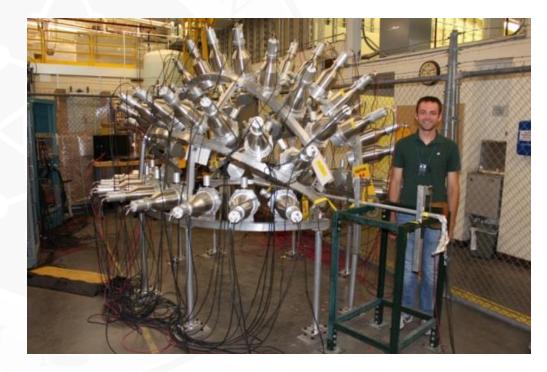
Chi-Nu array with liquid organic scintillators.

Acknowledgements

The authors thank P. Talou (LANL), R. C. Haight (LANL), R. Vogt (LLNL), and J. Randrup (LBNL) for their collaboration to this research.

This work was funded in-part by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534.

M. J. Marcath is supported by the U.S. Department of Energy Nuclear Nonproliferation International Safeguards Graduate Fellowship Program sponsored by the National Nuclear Security Administration's Office of Nonproliferation and International Security.

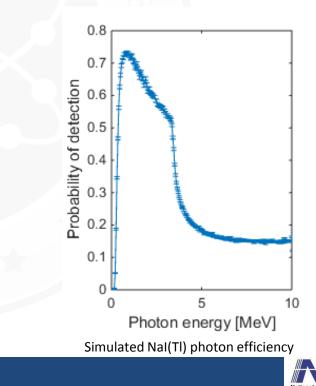


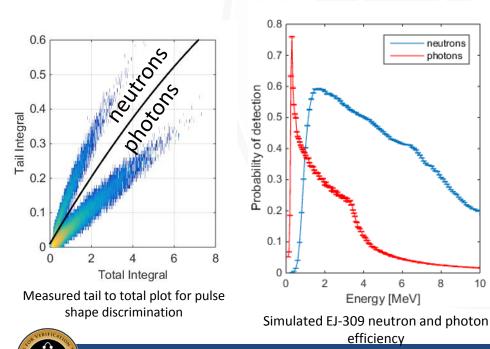
Measurement of Correlated Data from Nuclear Fission

M. J. Marcath¹, T. H. Shin¹, Angela Di Fulvio¹, S. D. Clarke¹, E. W. Larsen¹, R. C. Haight², P. Talou², S. A. Pozzi¹

¹Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA ²Los Alamos National Laboratory, Los Alamos, NM, USA

CVT Workshop - October 19, 2016


Detection tools


neutrons

photons

- EJ-309 ٠
 - Primary mechanisms of detection
 - Neutron elastic scattering on • hydrogen
 - Photon Compton scattering
 - Time resolution 1 ns FWHM

- Nal(TI)
 - Photoelectric absorption and Compton scattering
 - Good photon efficiency
 - Time resolution 3.5 ns at FWHM

2

4

6

Energy [MeV]

effi<u>ciency</u>

8

10

References

- D. Henzlova, R. Kouzes, R. McElroy, P. Peerani, M. Aspinall, K. Baird, A. Bakel, M. Borella, M. Bourne, L. Bourva, F. Cave, R. Chandra, D. Chernikova, S. Croft, G. Dermody, A. Dougan, J. Ely, E. Fanchini, P. Finocchiaro, V. Gavron, M. Kureta, K. D. Ianakiev, K. Ishiyama, T. Lee, C. Martin, K. McKinny, H. O. Menlove, C. Orton, A. Pappalardo, B. Pedersen, D. Peranteau, R. Plenteda, S. Pozzi, M. Schear, M. Seya, E. Siciliano, S. Stave, L. Sun, M. T. Swinhoe, H. Tagziria, S. Vaccaro, J. Takamine, A.-L. Weber, T. Yamaguchi, and H. Zhu, "Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards," Los Alamos, NM (United States), Jul. 2015.
- [2] N. Bohr and J. A. Wheeler, "The mechanism of nuclear fission," *Phys. Rev.*, 1939.
- [3] H. R. Bowman, J. C. D. Milton, S. G. Thompson, and W. J. Swiatecki, "Further Studies of the Prompt Neutrons from the Spontaneous Fission of Cf-252," *Phys. Rev.*, vol. 129, no. 5, pp. 2133–2147, 1963.
- [4] C. Wagemans, "The Nuclear Fission Process," CRC Press, Ann Arbor, MI, 1991.
- [5] J. M. Mueller and J. Mattingly, "Using anisotropies in prompt fission neutron coincidences to assess the neutron multiplication of highly multiplying subcritical plutonium assemblies," *Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.*, vol. 825, pp. 87–92, 2016.
- [6] L. Holewa, W. Charlton, E. Miller, and S. Pozzi, "Using neutron angular anisotropy information to dynamically determine the ratio of the (a,n) rate to spontaneous fission rate for coincidence counting applications," *Nucl. Inst. Methods Phys. Res. A*, vol. 701, pp. 249–253, 2013.
- [7] P. Talou, T. Kawano, and I. Stetcu, "Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons and Gamma Rays: Application to Thermal Neutron-Induced Fission Reactions on U-235 and Pu-239," Los Alamos, NM (United States), 2012.
- [8] J. Randrup and R. Vogt, "Calculation of fission observables through event-by-event simulation," *Phys. Rev. C*, vol. 80, no. 2, p. 024601, 2009.
- S. A. Pozzi, S. D. Clarke, W. J. Walsh, E. C. Miller, J. L. Dolan, M. Flaska, B. M. Wieger, a. Enqvist, E. Padovani, J. K. Mattingly, D. L. Chichester, and P. Peerani, "MCNPX-PoliMi for nuclear nonproliferation applications," *Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.*, vol. 694, pp. 119–125, 2012.

