Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection

Dr. Pin-Yu Chen¹ Dr. Sutanay Choudhury² Prof. Alfred Hero¹

¹Department of Electrical Engineering and Computer Science University of Michigan ²Pacific Northwest National Laboratory

Motivation

"The IAEA has reported cases of random malware-based attacks at nuclear plants"[1]

"Cyber threats to nuclear materials, nuclear facilities and nuclear command, control and communications are becoming more sophisticated every day, and the global technical capacity to address the threat is limited."[2]

- [1] Inter Press Service News Agency, Aug 17, 2015
- [2] Senator Sam Nunn and Ted Turner, Nuclear Threat Initiative (NTI), 2016

Nuclear Facility Cyber Intrusion

Possible Pathways into a Control System

Source: Fig. 1, Eric Byres, Tofino Security White Paper, , 2012.

Cyber Security via Graph Mining

- Represent pairwise interactions between entities on network as a graph
- Extract structural features from a graph (or ensembles of graphs) for graph connectivity summarization and anomaly detection
- Transform graph representation to feature matrix representation
- Identify high vulnerability nodes
- Early detection of anomalies and attacks

Our Contributions

Multi-centrality graph PCA (MC-GPCA) for a single graph

Multi-centrality graph dictionary learning (MC-GDL) for

ensembles of graphs

Application to cyber intrusion detection

Ref: Chen-Choudhury-Hero,

Graph Structural Feature Extraction

- Goal: extract structural features from a graph G of n nodes and represent them by an $n \times p$ feature matrix \mathbf{X}
 - p:# of extracted structural features

$$- \mathbf{X} = \begin{bmatrix} \mathbf{x}_{\# \ h-hop \ walk} & \mathbf{x}_{h-hop \ weight} & \cdots & \mathbf{x}_{deg} & \mathbf{x}_{eig} & \mathbf{x}_{betweenness} & \cdots & \mathbf{x}_{ref} & \cdots \end{bmatrix}_{n \times p}$$

Three types of graph structural features are extracted:

(1) graph walk statistics

- # of h-hop walks $\mathbf{a}^{(h+1)} = \mathbf{A} \mathbf{a}^{(h)}$
 - A: adjacency matrix of G
- total weight of *h*-hop walks $\mathbf{w}^{(h+1)} = \mathbf{W} \mathbf{a}^{(h)} + \mathbf{A} \mathbf{w}^{(h)}$
 - W: edge weight matrix of G
- -> efficient recursive computation

Graph Structural Feature Extraction

(2) centrality measures

- One centrality measure of each node = One extracted structural feature (one column of X)
- LFVC: local Fiedler vector centrality [Chen-Hero ICASSP'14, Comm. Mag.'14, Tran. Signal Processing'15]

• # of connections Degree • # of shortest paths Betweenness average hop distance Closeness relative importance Eigenvector local betweenness Ego **LFVC** algebraic connectivity

Graph Structural Feature Extraction

(3) hop distance to a set of reference nodes

- select some "anchor nodes" in the graph and use hop distances to these nodes as graph structural features
- enhance structural identifiability for graphs of high symmetry
- example:
 - nodes 1,2,3,4 are indistinguishable using degree feature
 - use node 1 as a reference node, then only nodes 4 and 5 are indistinguishable

Multi-Centrality Graph PCA (MC-GPCA)

- Project (normalized and centered) structural feature matrix X
 onto a set of uncorrelated orthogonal basis
- Advantages:
 - 1) <u>Decorrelation</u> structural features are often correlated
 - 2) <u>Visualization</u> via projection coefficients

Algorithm 1 Multi-centrality graph PCA (MC-GPCA)

Input: A graph $G = (\mathcal{V}, \mathcal{E})$, desired dimension q

Output: n structural coordinates \mathbf{Y} for each node in G

- 1. Extract p structural vectors \mathbf{X} from G
- 2. Normalize each column of X to have unit norm
- 3. Subtract row-wise empirical average from **X**
- 4. Solve the right singular vectors V_q of X
- 5. $\mathbf{Y} = \mathbf{X}\mathbf{V}_q$

MC-GPCA Illustrating Examples

extract 1-4 hop graph walk statistics, reference node = node 1, p = 9

Structural Difference Score (SDS)

- Y: an $n \times q$ matrix from MC-GPCA
- SDS of node i:

$$SDS(i) = \frac{\sum_{j \in Neighbor(i)} \|row_i(\mathbf{Y}) - row_j(\mathbf{Y})\|^2}{d_i + 1}$$

 d_i : degree of node i

Interpretation: an aggregated centrality measure of structural difference of a node and its neighboring nodes

Multi-Centrality Graph Dictionary Learning (MC-GDL)

- Given a set of g graphs. For each graph, run MC-GPCA, compute SDS, extract top z nodes of highest SDS as one column of Z
- Sparse dictionary learning model: Z = DC + noise. C column sparse
- K-SVD [Aharon-Elad-Bruckstein, Tran. Signal Processing'06]: $\min_{\mathbf{D},\mathbf{C}} ||\mathbf{Z} \mathbf{DC}||_{\mathbf{F}}^2$ subject to $\|\mathbf{col_j}(\mathbf{C})\|_{\mathbf{O}} \leq S, \forall j$

Algorithm 2 Multi-centrality graph dictionary learning (MC-GDL)

Input: A set of graphs $\{G_\ell\}_{\ell=1}^g$, number of atoms K, sparsity constraint S, number of highest SDS feature z

Output: graph structure dictionary D, coefficient matrix C

- 1. Obtain z highest SDS for each graph as columns of **Z**
- 2. Subtract column-wise empirical average from **Z**
- 3. Perform K-SVD on **Z** to obtain **D** and **C**

Application: Cyber Intrusion Detection

 The University of New Brunswick (UNB) intrusion detection dataset - 7 days of graph connectivity patterns of a cyber system [3]

Dataset	# nodes	# edges	Description
Day 1	5357	12887	Normal activity
Day 2	2631	5614	Normal activity
Day 3	3052	5406	Infiltrating attack and
			normal activity
Day 4	8221	12594	HTTP denial of service
			attack and normal activity
Day 5	24062	32848	Distributed denial of
			service attack using Botnet
Day 6	5638	13958	Normal activity
Day 7	4738	11492	Brute force SSH attack
			and normal activity

Extracted structural features for each graph:

- 1) 1-20 hop graph walk statistics
- 2) 6 centrality measures
- 3) 10 reference nodes of highest degree In total p = 56 features

Ref: Chen-Choudhury-Hero, ICASSP'16

[3] Shiravi-Shiravi-Tavallaee-Ghorbani, Computers & Security 12

Performance Evaluation - MC-GPCA

SDS score (proposed)

Degree score

✓ The proposed SDS from MC-GPCA is an effective indicator of intrusions resulting in anomalous connectivity patterns (Days 3,4,5)

Ref: Chen-Choudhury-Hero, ICASSP'16

Performance Evaluation - MC-GDL

Atoms from MC-GDL

Coefficients from MC-GDL

✓ The atoms learned from MC-GDL reflect normal and anomalous connectivity patterns, and the coefficient matrix C from MC-GDL can be used for attack classification.

Ref: Chen-Choudhury-Hero, ICASSP'16

Conclusion

- Nuclear facilities are vulnerable to cyber attacks
- Tools for early detection of cyberattacks are essential
- Proposed a multi-centrality decomposition of at-risk networks (MC-GPCA & MC-GDL)
- Proposed a structural difference score (SDS) for detecting anomalous connectivity patterns
- Demonstrated on cyber intrusion database based on pairwise connectivity of nodes

Acknowledgements

 This work was partially supported by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534 and by the Asymmetric Resilient Cyber Security initiative at Pacific Northwest National Laboratory.

Contact Info: {pinyu,hero}@umich.edu

