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Motivation

“The IAEA has reported cases of random
malware-based attacks at nuclear plants”[1]

“Cyber threats to nuclear materials, nuclear
facilities and nuclear command, control and
communications are becoming more
sophisticated every day, and the global technical
capacity to address the threat is limited.”[2]

[1] Inter Press Service News Agency, Aug 17, 2015
[2] Senator Sam Nunn and Ted Turner, Nuclear Threat Initiative (NTI), 2016
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Nuclear Facility Cyber Intrusion
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Cyber Security via Graph Mining

* Represent pairwise interactions between
entities on network as a graph

e Extract structural features from a graph (or
ensembles of graphs) for graph connectivity
summarization and anomaly detection

* Transform graph representation to feature
matrix representation

* |dentify high vulnerability nodes
e Early detection of anomalies and attacks
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Our Contributions
* Multi-centrality graph PCA (MC-GPCA) for a single graph

Structural Multi-Centrality
j) Feature j> Graph PCA
Extraction (MC-GPCA)

 Multi-centrality graph dictionary learning (MC-GDL) for
ensembles of graphs
Emmion::> I|:> Multi-Centrality
Structural Graph
Foaturo. ::> MC-GPCA::> Dictionary
Extraction Learnin g
. |::> ::> (MC-GDL)

* Application to cyber intrusion detection
Ref: Chen-Choudhury-Hero,
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https://arxiv.org/abs/1512.07372

Graph Structural Feature Extraction

* Goal: extract structural features from a graph G of n nodes and
represent them by an n x p feature matrix X
— p . # of extracted structural features

- X= [X# h—hop walk Xh—hop weight *** Xdeg Xeig Xbetweenness *** Xref """ ]nxp

* Three types of graph structural features are extracted:

(1) graph walk statistics
— # of h-hop walks — a(t*1)=Aa(®
A: adjacency matrix of G
— total weight of A-hop walks — w(**T=Wa(® + Aw(")
W: edge weight matrix of G
-> efficient recursive computation
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Graph Structural Feature Extraction

N

e # of connections

(2) centrality measures

Slaiizsanes | e # of shortest paths

* One centrality measure of each
node = One extracted structural
feature (one column of X)

* LFVC: local Fiedler vector
centrality [Chen-Hero ICASSP’14,

e average hop distance
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Graph Structural Feature Extraction

(3) hop distance to a set of reference nodes

— select some “anchor nodes” in the graph and use hop
distances to these nodes as graph structural features

— enhance structural identifiability for graphs of high symmetry
— example:

* nodes 1,2,3,4 are
indistinguishable
using degree feature

e usenodelasa
reference node, then
only nodes 4 and 5
are indistinguishable

Xref =

t:\JNn—\r—tc:J

tfom-[:-l\:t\'g




Multi-Centrality Graph PCA (MC-GPCA)

* Project (normalized and centered) structural feature matrix X
onto a set of uncorrelated orthogonal basis

* Advantages:
1) Decorrelation — structural features are often correlated

2) Visualization via projection coefficients
Algorithm 1 Multi-centrality graph PCA (MC-GPCA)

Input: A graph G = (V, £), desired dimension ¢
Output: n structural coordinates Y for each node in GG
1. Extract p structural vectors X from G

2. Normalize each column of X to have unit norm

3. Subtract row-wise empirical average from X

4. Solve the right singular vectors V, of X

5.Y = XV,
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MC-GPCA IIIustrating Examples
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Structural Difference Score (SDS)

* Y: an n X g matrix from MC-GPCA
« SDS of node i :

2
jeNeighbor(i) [Towi(Y)—row;(Y)||
di+1

SDS(i) = =
d;: degree of node i

» Interpretation: an aggregated centrality
measure of structural difference of a node
and its neighboring nodes

2 . ofs e
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Multi-Centrality Graph Dictionary Learning
(MC-GDL)

« Given a set of g graphs. For each graph, run MC-GPCA, compute
SDS, extract top z nodes of highest SDS as one column of Z

« Sparse dictionary learning model: Z = DC + noise. C column sparse

« K-SVD [Aharon-Elad-Bruckstein, Tran. Signal Processing’06]:
miny ¢||Z — DC||§ subject to ||colj(C)||n <SVj

Algorithm 2 Multi-centrality graph dictionary learning (MC-GDL)

Input: A set of graphs {G/,}7_,, number of atoms K, sparsity
constraint .S, number of highest SDS feature z

Output: graph structure dictionary D, coefficient matrix C

1. Obtain z highest SDS for each graph as columns of Z

2. Subtract column-wise empirical average from Z

3. Perform K-SVD on Z to obtain D and C
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Application: Cyber Intrusion Detection

« The University of New Brunswick (UNB) intrusion
detection dataset - 7 days of graph connectivity patterns
of a cyber system [3]

Dataset | #nodes | # edges Description Extracted structural features
Day 1 5357 12887 Normal activity f h h:
Day 2 2631 5614 Normal activity or each grapn.
Day3 | 3052 | 5406 Infilirating attack and 1) 1—ZQ hpp graph walk
normal activity statistics
HTTP denial of service :
Day 4 8221 12594 attack and normal activity 2) 6 Centra“ty measures
Distributed denial of 3) 10 reference nodes of
Day 5 24062 32848 service attack using B '
. sing Botnet highest degree
Day 6 5638 13958 Normal activity —
Day 7 4738 1149 Brute force SSH attack In total p = 56 features
: and normal aclivity Ref: Chen-Choudhury-Hero, ICASSP’16

[3] Shiravi-Shiravi-Tavallaee-Ghorbani, Computers & Security’12
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Performance Evaluation - MC-GPCA

SDS score (proposed) Degree score
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v' The proposed SDS from MC-GPCA is an effective indicator of
Intrusions resulting in anomalous connectivity patterns (Days 3,4,5)

Ref: Chen-Choudhury-Hero, ICASSP’16
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Performance Evaluation - MC-GDL

Atoms from MC-GDL Coefficients from MC-GDL
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v" The atoms learned from MC-GDL reflect normal and anomalous
connectivity patterns, and the coefficient matrix C from MC-GDL

can be used for attack classification.
Ref: Chen-Choudhury-Hero, ICASSP’16
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Conclusion

Nuclear facilities are vulnerable to cyber attacks
Tools for early detection of cyberattacks are essential

Proposed a multi-centrality decomposition of at-risk
networks (MC-GPCA & MC-GDL)

Proposed a structural difference score (SDS) for
detecting anomalous connectivity patterns

Demonstrated on cyber intrusion database based on
pairwise connectivity of nodes

Consortium for Verification Technology //;/IAV'

’4
"



Acknowledgements

« This work was partially supported by the Consortium for
Verification Technology under Department of Energy
National Nuclear Security Administration award number
DE-NA0002534 and by the Asymmetric Resilient Cyber

Security initiative at Pacific Northwest National
Laboratory.

e Contact Info: {pinyu,hero}@umich.edu

Ref: Chen-Choudhury-Hero, ICASSP’16

Consortium for Verification Technology ////IAV'A'u‘



https://arxiv.org/abs/1512.07372

