

Office of Defense Nuclear Nonproliferation Research and Development

CVT – Consortium for Verification Technology

Thrust II: Fundamental physical data acquisition and analysis

October 19, 2016

Alfred Hero
MIDAS/EECS/BME/Statistics
University of Michigan

CVT Thrust II Goals

Goal 1: Anomaly detection and localization (Hero, Fisher)

- Objective: To develop sensitive statistically based methods for detecting anomalies, e.g., material diversions from nuclear fuel cycles and cyberattacks.
- Methods: machine learning, anomaly detection, quickest change detection, information fusion, multimodal factor analysis, nuclear fuel cycle simulation.

Goal 2: Fundamental physics modeling of radiation detectors (Pozzi, Hero)

- Objective: To simulate and experimentally validate new models for gamma and neutron detection.
- Methods: Prompt neutron correlation analysis, monte carlo simulation of source/detector interaction physics, experimental validation.

Goal 3: Signal and image processing for radiation detection (Mattingly, Carin)

- Objective: to develop DAQ and signal processing algorithms for emerging radiation detection technologies
- Methods: deep learning, compressive sampling, neutron scattering models, neutron track modeling, algebraic image reconstruction, experimental validation.

Objective of IAEA safeguards: "...the *timely detection* of any diversion of significant quantities of nuclear material and to deter diversion by creating the risk of *early detection*." Leonard Weiss, Bulletin of Atomic Scientists, vol. 47, no. 4, 1991.

Proliferation: Threat and Response 1997. http://fas.org/irp/threat/prolif97/meafrica.html

Objective of IAEA safeguards: "...the *timely detection* of any diversion of significant quantities of nuclear material and to deter diversion by creating the risk of *early detection*." Leonard Weiss, Bulletin of Atomic Scientists, vol. 47, no. 4, 1991.

Proliferation: Threat and Response 1997. http://fas.org/irp/threat/prolif97/meafrica.html

Objective of IAEA safeguards: "...the *timely detection* of any diversion of significant quantities of nuclear material and to deter diversion by creating the risk of *early detection*." Leonard Weiss, Bulletin of Atomic Scientists, vol. 47, no. 4, 1991.

Remote Imaging *L. Carin*,

Delivery/
Shipment
monitoring
Y. Yilmaz

Objective of IAEA safeguards: "...the *timely detection* of any diversion of significant quantities of nuclear material and to deter diversion by creating the risk of *early detection*." Leonard Weiss, Bulletin of Atomic Scientists, vol. 47, no. 4, 1991.

Emission monitoring *E.Hou J. Fisher*

Objective of IAEA safeguards: "...the *timely detection* of any diversion of significant quantities of nuclear material and to deter diversion by creating the risk of *early detection*." Leonard Weiss, Bulletin of Atomic Scientists, vol. 47, no. 4, 1991.

Proliferation: Threat and Response 1997. http://fas.org/irp/threat/prolif97/meafrica.html

Objective of IAEA safeguards: "...the *timely detection* of any diversion of significant quantities of nuclear material and to deter diversion by creating the risk of *early detection*." Leonard Weiss, Bulletin of Atomic Scientists, vol. 47, no. 4, 1991.

In situ radiation detection

S. Pozzi

A. Hero

J. Mattingly

Anomaly detection Delivery/shipment network monitoring

Technical challenge(Hero)

 Detecting anomalies in shipment patterns across fuel cycle networks is a very difficult inverse problem when traffic only partially observed.

Progress(Hero)

- A generative (Bayesian) hierarchical Gamma-Poisson model introduced that combines anomaly detection and network tomography
- Accurate reconstruction algorithm implemented via fast EM algorithm that outperforms the standard MLE for network tomography.
- Proposed method detects new edges (anomalies) with high accuracy.
- Collaborations: Earl Lawrence at LANL

Actual network (ground truth)

Proposed MRE-HiPois has best reconstruction accuracy

Observed network

Its implementation complexity is significantly smaller than others

E. Hou, Y. Yilmaz, A Hero, "Diversion Detection in Partially Observed Nuclear Fuel Cycle Networks," ANS Workshop, Santa Fe, 2016

Anomaly detection Delivery/shipment monitoring

Technical challenge (Hero):

 Combining multimodal measurements (power and shipments) to most quickly detect anomalies or diversions.

Progress (Hero):

- Proposed model for inferring unobserved HEU diverter amidst multiple observed LEU customers.
- Formulated a multimodal CUSUM test for quickest detection of anomalies due to HEU diversion
- Applied procedure to simulated power consumption and shipment traffic.
- Quickest detection performance significantly beats the state of the art Kolmogorov-Smirnov,
- Collaborations: Paul Wilson at UW

TABLE I. Sample shipments of 1 ton with duration and average power consumption observations.

Shipment no.	Duration (days)	Average Power Consumption (MTSWU/day)
1	17.11	0.2015
2	43.33	0.1018

Anomaly detection Emission monitoring: detection and tracking

Technical challenge(Hero, Hou)

 Detect anomalous nuclear facility emission patterns: heat, water, vapor

Progress(Hero, Hou)

 Emissions modeled as a spatiotemporal random field

$$\mathbf{y}_t = h(\mathbf{x}_t) + \boldsymbol{\epsilon}_t \qquad \mathbf{x}_t = f(\mathbf{x}_{t-1}) + \boldsymbol{\omega}_t$$

- Ensemble Kalman filter uses model to predict
 - o future emission patterns
 - o Posterior 95% confidence envelope
- We detect anomalies w/ confidence
- Anomaly detector tested on simulated shallow water ODE model.
- Collaborations: Earl Lawrence (LANL)

Ensemble Kalman filter

Observations

Posterior predictor trajectory with confidence envelope

Signal/image processing Emission monitoring: active localization

Technical challenge (Fisher):

 Autonomous navigation for chemical source localization in complex transport medium

Progress (Fisher):

- Formulated dynamic Bayesian information planning problem
- Developed graphical model for longitudinal; data integration
- Introduced multiscale ODE vector field model for propagation of plume and localization density

Signal/image processing Deep learning for security and threat detection

Technical challenge (Carin):

 – CVT applications require classification with limited labeled (training) data → semisupervised learning is necessary.

• Progress (Carin):

- CNN image classifier developed for SSL
- Demonstrated improvement on ImageNet
- Variational autoencoder (VAE)
 - o Deep encoder for feature selection (CNN)
 - Deep decoder for image reconstruction

Semi-Supervised ImageNet Analysis

1000 image classes, 1M training images

Collaborations: Tom Potok and Karen Miller at ORNL&LANL

Anomaly detection Cyber-intrusion detection

Technical challenge(Hero)

 Detecting potentially catastrophic cyber-intrusions on nuclear facilities...

Progress(Hero)

- Represent interactions between entities on network as a graph
- Extract multi-centrality structural features to identify at-risk nodes
- Select best combination of multicentrality features with dictionary learning
- Implement dictionary for early detection of anomalies&attacks
- Validate on experimental data (New Brunswick cyberintrusion data)
- Collaborations: Sutanay Choudhury (PNNL)

Fundamental physics modeling Correlations in Prompt Neutrons and Gamma-rays from Fission

Technical challenge (Pozzi):

 To accurately discriminate fissile materials from other radioactive sources for treaty verification.

Progress (Pozzi and Hero):

- High sensitivity neutron pulse discrimination and unfolding without time-of-flight information
- Developed Bayes-optimal neutron unfolding and pulse discrimination algorithms
- Tested on data generated from organic and Nal scinitillator detector array in S. Pozzi's lab.

Collaborations: LANL, LLNL, LBNL

Non-Bayesian neutron unfolding

Conclusion

- Thrust 2 is making progress on data analysis for diversion detection, fundamental physics modeling and signal/image processing for radiation detection.
- Collaborations with 6 National Laboratories reinforce CVT mission

For more information on Thrust 2 see other presentations today:

- P.-Y. Chen, "Multicentrality graph spectral decomposition techniques...," (Oral)
- 2. J. Mattingly, "Data compression and analysis methods...," (Oral)
- 3. E. Hou E. Lawrence, A. Hero, "Penalized ensemble kalman filter methods...," (Poster)
- 4. Y. Altman, A. DiFulvio, A. Hero, S. Mclaughlin, S. Pozzi, "Advanced analytic methods for neutron spectra...," (Poster)
- 5. K. Liang and L. Carin, "Deep learning for complex image analysis," (Poster)

Associated National Laboratories

- Los Alamos National Laboratory (LANL)
 - High dimensional anomaly detection project (LANL partner Earl Lawrence working w/ Hero)
 - Physics of fission experiments and theory (LANL partners Robert Haight and Patrick Talou working with Pozzi)
- Pacific Northwest National Laboratory (PNNL)
 - Compressive sensing to transmission electron microscopy project (TEM) project (PNNL partners Andrew Stevens and Nigel Browning working with Carin)
 - Heterogeneous network models for cyber-security project (PNNL partner Sutenay Choudhury working with Hero)
- Oak Ridge National Laboratory (ORNL)
 - Neutron coded aperture fast neutron camera project (ORNL partners Jason Newby & Paul Hausladen working witn Mattingly and Chapman, NCSU)
 - Application of deep-learning technology to airborne imagery (ORNL partner Thomas Potok working with Carin)
- Sandia National Laboratory (SNL)
 - Compact single-volume neutron scatter camera project (SNL partner Erik Brubaker working with Mattingly and Weinfurther, NCSU)
- Lawrence Livermore National Laboratory (LLNL)
 - Large liquid scintillator array project (LLNL partner Les Nakae working with Mattingly)
 - FREYA Modeling of Fission Correlations (LLNL partner Ramona Vogt working with Pozzi)
- Lawrence Berkeley National Laboratory (LBNL)
 - FREYA Modeling of Fission Correlations (LBNL partner Jurgen Randrup working with Pozzi)

Thrust II students and post-docs (2015-16)

Funded by CVT

- Elizabeth Hou (UM STATS): CVT Fellow
- Charles Sosa (UM NERS), CVT Fellow
- David Carlson (Duke ECE), CVT Fellow
- Sue Zheng (MIT CSAIL), CVT Fellow
- Yassin Yilmaz (UM EECS): post-doctoral fellow
- Sijia Liu (UM EECS): post-doctoral fellow
- Angela Di Fulvio (UM NERS), post-doctoral fellow
- Xuejun Liao (Duke ECE), post-doctoral fellow
- Rob Weldon (NCSU NE Ph.D. student): CVT fellow (poster)
- Jonathan Mueller (Duke Physics), post-doctoral fellow
- Oren Freifeld (MIT CSAIL), post-doctoral fellow

Funded from non-CVT sources

- Pin Yu Chen (UM EECS): PhD candidate (PNNL supported)
- Matthew Marcath (UM NERS), Ph.D candidate (poster)
- Tony Shin (UM NERS), M.S. student
- Steve Ward (UM NERS), M.S. student
- Andrew Stevens (Duke ECE), PhD student (PNNL employee)
- Kyle Weinfurther (NCSU Nuclear Eng), PhD student (Sandia supported) (poster)
- Pete Chapman (NCSU Nuclear Eng), Ph.D. student (supported by US Army)
- Mudit Mishra (NCSU NE Ph.D. student): supported by NCSU Engineering fellowship
- Ben Reed (Surrey Physics student): supported by Surrey
- Yoan Altman (Herriot-Watt post-doc): supported by Herriot-Watt