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CVT Thrust II Goals 

• Goal 1: Anomaly detection and localization (Hero, Fisher) 

– Objective: To develop sensitive statistically based methods for detecting 
anomalies, e.g., material diversions from nuclear fuel cycles and 
cyberattacks. 

– Methods: machine learning, anomaly detection, quickest change detection, 
information fusion, multimodal factor analysis, nuclear fuel cycle simulation. 

• Goal 2: Fundamental physics modeling of radiation detectors 
(Pozzi, Hero) 

– Objective: To simulate and experimentally validate new models for gamma 
and neutron detection. 

– Methods: Prompt neutron correlation analysis, monte carlo simulation of 
source/detector interaction physics, experimental validation.   

• Goal 3: Signal and image processing for radiation detection 
(Mattingly, Carin)   

– Objective: to develop DAQ and signal processing algorithms for emerging 
radiation detection technologies  

– Methods: deep learning, compressive sampling, neutron scattering models, 
neutron track modeling, algebraic image reconstruction, experimental 
validation.   
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Nuclear fuel cycle 

Proliferation: Threat and Response 1997. http://fas.org/irp/threat/prolif97/meafrica.html 

 

Objective of IAEA safeguards: "...the timely detection of any diversion of significant 

quantities of nuclear material and to deter diversion by creating the risk of early 

detection." Leonard Weiss, Bulletin of Atomic Scientists, vol. 47, no. 4, 1991.  
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Anomaly detection 
Delivery/shipment network monitoring 

• Technical challenge(Hero) 

– Detecting anomalies in shipment 

patterns across fuel cycle networks 

is a very difficult inverse problem 

when traffic only partially observed.  

• Progress(Hero) 

– A generative (Bayesian) hierarchical  

Gamma-Poisson model introduced 

that combines anomaly detection 

and network tomography  

– Accurate reconstruction algorithm 

implemented via fast EM algorithm 

that outperforms the standard MLE 

for network tomography.   

– Proposed method detects new 

edges (anomalies) with high 

accuracy.   

• Collaborations: Earl Lawrence at LANL  

 

Actual network (ground truth) Observed network 

Proposed MRE-HiPois has best 

reconstruction accuracy 

Proposed 

algorithm 

Its implementation complexity is 

significantly smaller than others 

Standard 

algorithm 

E. Hou, Y. Yilmaz, A Hero, “Diversion Detection in Partially Observed Nuclear Fuel Cycle Networks,”  ANS Workshop, Santa Fe,  2016. 
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Anomaly detection 
Delivery/shipment monitoring 

• Technical challenge (Hero): 

– Combining multimodal measurements 

(power and shipments) to most quickly 

detect anomalies or diversions. 

• Progress (Hero):  

– Proposed model for inferring 

unobserved HEU diverter amidst 

multiple observed LEU customers.  

– Formulated a multimodal CUSUM test 

for quickest detection of anomalies 

due to HEU diversion 

– Applied procedure to simulated power 

consumption and shipment traffic. 

– Quickest detection performance 

significantly beats the state of the art 

Kolmogorov-Smirnov, 

• Collaborations: Paul Wilson at UW 
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Y. Yilmaz, E. Hou, A. Hero, “Diversion Detection in Nuclear Fuel Cycles from Multi-Modal Observations,”  ANS Workshop, Santa Fe, 2016. 
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Anomaly detection 
 Emission monitoring: detection and tracking  

• Technical challenge(Hero, Hou) 

– Detect anomalous nuclear facility 

emission patterns: heat, water, vapor  

• Progress(Hero, Hou) 

– Emissions modeled as a spatio-

temporal random field 

𝐲𝑡 = ℎ 𝐱𝑡 + 𝝐𝑡         𝐱𝑡 = 𝑓 𝐱𝑡−1 + 𝝎𝑡   
 

– Ensemble Kalman filter uses model to 

predict  

o future emission patterns 

o Posterior 95% confidence envelope 

– We detect anomalies w/ confidence  

– Anomaly detector tested on simulated 

shallow water ODE model. 

• Collaborations: Earl Lawrence (LANL)  

 

Ensemble Kalman filter                    Observations  

E. Hou, E. Lawrence, A Hero, “Penalized Ensemble Kalman Filters for High Dimensional Non-linear Systems,”  submitted, 2016. 

Posterior predictor trajectory with confidence envelope 
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Signal/image processing 
Emission monitoring: active localization 

• Technical challenge (Fisher): 

– Autonomous navigation for 

chemical source localization in 

complex transport medium 

• Progress (Fisher):  

– Formulated dynamic Bayesian 

information planning problem 

– Developed graphical model for 

longitudinal; data integration  

– Introduced multiscale ODE vector 

field model for propagation of 

plume and localization density 
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Signal/image processing 
Deep learning for security and threat detection 

• Technical challenge (Carin): 

– CVT applications require classification  

with limited labeled (training) data → semi-

supervised learning is necessary. 

• Progress (Carin):   

– CNN image classifier developed for SSL  

– Demonstrated improvement on ImageNet 

– Variational autoencoder (VAE) 

o Deep encoder for feature selection (CNN) 

o Deep decoder for image reconstruction 

 

 

 

 

 

 
Y. Pu, X. Yuan, A. Stevens, C. Li, L. Carin, A Deep Generative Deconvolutional Image Model, Artificial Intelligence and Statistics (AISTATS), 2016 

Classifier 
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Features 

Example Images 

Collaborations: Tom Potok and Karen Miller at ORNL&LANL 
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Anomaly detection 
Cyber-intrusion detection 

• Technical challenge(Hero) 

– Detecting potentially catastrophic 

cyber-intrusions on nuclear facilities..  

• Progress(Hero) 

– Represent interactions between 

entities on network as a graph 

– Extract multi-centrality structural 

features to identify at-risk nodes 

– Select best combination of 

multicentrality features with dictionary 

learning  

– Implement dictionary for early 

detection of anomalies&attacks 

– Validate on experimental data (New 

Brunswick cyberintrusion data) 

• Collaborations: Sutanay Choudhury 

(PNNL)  

 

Cyber-intrusions vulnerabilities on a Nuclear Facility 

P.Y. Chen, S. Choudhury, A Hero, “Multi-centrality Graph Spectral Decompositions … Cyber Intrusion Detection,”  ICASSP, Shanghai  2016. 



17 

Fundamental physics modeling 
Correlations in Prompt Neutrons and  

Gamma-rays from Fission 

• Technical challenge (Pozzi): 

– To accurately discriminate fissile materials from 

other radioactive sources for treaty verification.  

• Progress (Pozzi and Hero):  

– High sensitivity neutron pulse discrimination 

and unfolding without time-of-flight information 

– Developed Bayes-optimal neutron unfolding 

and pulse discrimination algorithms 

– Tested on data generated from organic and NaI 

scinitillator detector array in S. Pozzi’s lab. 

 

 

 

 

 

 

 

 

• Collaborations: LANL, LLNL, LBNL 
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Non-Bayesian neutron unfolding 

Bayesian neutron unfolding 
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Conclusion 

• Thrust 2 is making progress on data analysis for diversion detection, 

fundamental physics modeling and signal/image processing for 

radiation detection.  

• Collaborations with 6 National Laboratories reinforce CVT mission 

 

For more information on Thrust 2 see other presentations today: 

1. P.-Y. Chen, “Multicentrality graph spectral decomposition techniques…,”  

(Oral) 

2. J. Mattingly, “Data compression and analysis methods…,” (Oral) 

3. E. Hou E. Lawrence, A. Hero, ”Penalized ensemble kalman filter 

methods…,” (Poster) 

4. Y. Altman, A. DiFulvio, A. Hero, S. Mclaughlin, S. Pozzi, “Advanced analytic 

methods for neutron spectra…,” (Poster) 

5. K. Liang and L. Carin, “Deep learning for complex image analysis,” (Poster) 
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Associated National Laboratories 

• Los Alamos National Laboratory (LANL) 
– High dimensional anomaly detection project (LANL partner Earl Lawrence working w/ Hero) 

– Physics of fission experiments and theory (LANL partners Robert Haight and Patrick Talou 
working with Pozzi) 

• Pacific Northwest National Laboratory (PNNL) 
– Compressive sensing to transmission electron microscopy project  (TEM) project (PNNL 

partners Andrew Stevens and Nigel Browning working with Carin) 

– Heterogeneous network models for cyber-security project (PNNL partner Sutenay Choudhury 
working with Hero) 

• Oak Ridge National Laboratory (ORNL) 
– Neutron coded aperture fast neutron camera project (ORNL partners Jason Newby & Paul 

Hausladen working witn Mattingly and Chapman, NCSU) 

– Application of deep-learning technology to airborne imagery (ORNL partner Thomas Potok 
working with  Carin) 

• Sandia National Laboratory (SNL) 
– Compact single-volume neutron scatter camera project (SNL partner Erik Brubaker working 

with Mattingly and Weinfurther, NCSU) 

• Lawrence Livermore National Laboratory (LLNL) 
– Large liquid scintillator array project  (LLNL partner Les Nakae working with Mattingly) 

– FREYA Modeling of Fission Correlations (LLNL partner Ramona Vogt working with Pozzi) 

• Lawrence Berkeley National Laboratory (LBNL) 
– FREYA Modeling of Fission Correlations (LBNL partner Jurgen Randrup working with Pozzi) 
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Thrust II students and post-docs (2015-16) 

• Funded by CVT 
– Elizabeth Hou (UM STATS): CVT Fellow  

– Charles Sosa (UM NERS), CVT Fellow 

– David Carlson (Duke ECE), CVT Fellow 

– Sue Zheng (MIT CSAIL), CVT Fellow 

– Yassin Yilmaz (UM EECS): post-doctoral fellow 

– Sijia Liu (UM EECS): post-doctoral fellow 

– Angela Di Fulvio (UM NERS), post-doctoral fellow 

– Xuejun Liao (Duke ECE), post-doctoral fellow 

– Rob Weldon (NCSU NE Ph.D. student): CVT fellow (poster) 

– Jonathan Mueller (Duke Physics), post-doctoral fellow 

– Oren Freifeld (MIT CSAIL), post-doctoral fellow 

 

• Funded from  non-CVT sources 
– Pin Yu Chen (UM EECS): PhD candidate (PNNL supported) 

– Matthew Marcath (UM NERS), Ph.D candidate (poster) 

– Tony Shin (UM NERS), M.S. student 

– Steve Ward (UM NERS), M.S. student 

– Andrew Stevens (Duke ECE),  PhD student (PNNL employee) 

– Kyle Weinfurther (NCSU Nuclear Eng), PhD student (Sandia supported) (poster) 

– Pete Chapman (NCSU Nuclear Eng), Ph.D. student (supported by US Army) 

– Mudit Mishra (NCSU NE Ph.D. student): supported by NCSU Engineering fellowship 

– Ben Reed (Surrey Physics student): supported by Surrey 

– Yoan Altman (Herriot-Watt post-doc): supported by Herriot-Watt 
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