

Application of ⁴He Fast Neutron Scintillation Detectors to Nuclear Materials and Radiation Detection Yinong Liang University of Florida Andreas Enqvist, enqvist@ufl.edu, James Baciak, jebaciak@mse.uf.edu

Consortium for Verification Technology (CVT)

UNIVERSITY of **FLORIDA**

-total Cf-252

total Pu-Be

Pu-Be(γ, γ)

Pu-Be(n,n)

Pu-Be(n.☆

Introduction

The ⁴He fast neutron scintillation detectors

- Neutrons undergo elastic scattering with ⁴He nuclei
- Scintillation photons are produced by the decay of ⁴He excimers to the ground state
- Two Hamamatsu-R580 photomultipliers (PMTs) on each
- Both separate $((\gamma, \gamma), (n, n), (\gamma, n), and (n, \gamma))$ and total cross-correlation functions are measured

end of the detector, 150 bar high pressure ⁴He gas is filled inside the gas chamber

Figure 1: The PMT-based ⁴*He detector*

Characteristics

- High ⁴He elastic scattering cross-section around 1 MeV
- Neutron spectroscopy
- Good gamma-ray rejection and pulse shape discrimination (PSD) capability

Figure 4: Measured cross-correlation functions at P1 (left) and P3 (right) by using ²⁵²Cf source

The peak position of the cross-correlation functions (Gaussian-fitted) can indicate the source location; the shape of the cross-correlation functions can indicate the source type

Figure 2: The ⁴He detector's response matrix (left) and the PSD plot (right)

Technical Work and Results Measurement of neutron and gamma-ray crosscorrelation functions

Two sources (a 73.7 μ Ci ²⁵²Cf and a 1 Ci Pu-Be) are placed at three source-detector distances during the

20 Δ distance (cm) Time difference (ns)

Figure 5: the (n, n) peak position as a function of the source location (left) after gamma peak correction from ²⁵²Cf measurement, and the measured Pu-Be and ²⁵²Cf cross-correlation functions at P1 (right).

Spontaneous fission and (α, n) neutrons differentiation

Based on detector characterization (TOF technique), and iterative least square unfolding algorithm

measurement

Figure 3: The experimental setup of the crosscorrelation function measurement

This material is in part based upon work supported by the Department of Energy Nuclear Engineering University Program under Award **Number(s) DE-NE0008459.**

Figure 6: Measured scintillation light output from three types of neutron sources (left), and the corresponding unfolded spectra (right).

Mission Relevance

- Spent nuclear fuel dry casks monitoring
 - Primary neutron sources from the SNF: SF and (α, n) reactions
 - The emission neutron spectrum varies as a function of cooling time
- Nuclear safeguards
 - Source identification
 - Material-geometry configuration

