Enabling Multi-Informatics for Nuclear Operation Scenarios via a Scalable and Data Agnostic Framework

A. Christe1, M. Garces1, K. Asmar1, S. Magana-Zook2, J. Gaylord2, D. Chichester3

1University of Hawaii at Manoa, 2Lawrence Livermore National Laboratory, 3Idaho National Laboratory

Milton Garces, milton@isla.hawaii.edu

Consortium for Verification Technology (CVT)

Abstract

With the advent of distributed computing, managing data flow from sensor networks has become increasingly complex. We examine numerous cutting-edge technologies to enable secure acquisition, analysis, reporting, and collaboration of IoT sensor data. Our platform provides end-to-end security and data provenance to address sensitivity and privacy concerns. Our framework utilizes a flexible data model that accepts data from any of the available sensors on a smartphone. These data are provided to our collaborators in real-time over secure distributed data queues. We describe how these components work together to enable efficient collaboration and how they aid in the collection, detection, and analysis of signals of interest.

Introduction and Motivation

Benefits of Distributed Smartphone Networks
- Ubiquitous / mobile
- Rapidly deployable
- Small size, low weight, power, and cost
- Structured access to all onboard sensors

Challenges of Distributed Mobile Sensors
- Volume, velocity, variety, and value of data
- Secure sharing large data sets
- Intermittent data collection
- Deployment in restricted areas

Technical Work and Results

Lokahi Framework
Distributed - Acquisition / Analysis / Persistence / Reporting / Collaboration
Security & Privacy
- Fully encrypted
- Fully authenticated
- Control of sensor data
- Secure data sharing

CVT Impact

Unprecedented global collection capability
- From explosions
- From the nuclear fuel cycle
- From rocket launches
- On high-altitude balloons

Personal impacts
- LLNL Academic Cooperation Program
- CVT, UIIT, & UPR Workshops

Technical collaborations
- Evaluate Big Data tech stacks – LLNL
- Field collections - LLNL
- Identify possible fuel cycle signatures – INL & ORNL

Conclusion

- Framework enhances our ability to detect and characterize declared and undeclared infrasonic signals of interest
- Mobile sensors allow us to quickly deploy and supplement the International Monitoring System (IMS) network
- Distributed system handles multi-modal mobile sensor data securely at scale
- Real-time sharing of data with collaborators