CVT Workshop

October 31 – November 1, 2018

Absolute nuclear resonance fluorescence experiments for physics and security

Jayson R Vavrek, Brian S Henderson, Anton P Tonchev, Areg Danagoulian

MIT, LLNL, TUNL

11/01/2018
Goal: improved NRF cross section data for physics and security

NRF for security
- warhead verification
- nuclear structure
- cargo scanning
- energy selection (e.g. Pound-Rebka, Goldhaber expts)

NRF for physics
- Yoshimi et al, PRC (2008)
Mission Relevance and Outline

1. CVT Thrust Area 5: Disarmament Verification
 – Performed proof-of-concept warhead verification experiments with NRF

2. CVT Thrust Area 2: Physics
 – Validated U-238 and Al-27 NRF cross sections to within ~10% in an absolute measurement
 – Beginning MIT/LLNL/TUNL collaboration on absolute measurement of Pu-239 NRF cross sections
Template verification preserves security

Authenticated template “golden copy” of a warhead

Picked from a randomly selected ICBM

Candidate warheads

Is $A_0 = A_1$? ✓
$A_0 = A_2$? ✓
$A_0 = A_3$? ✓

Challenge:
1. Catch hoaxes
2. Identify all real warheads
3. Reveal no additional info

→ need physical cryptography
→ Use nuclear resonance fluorescence (NRF)!

Figure: Areg Danagoulian
NRF provides isotope-specific warhead measurements

Compare NRF signatures:
(candidate) + (encryption foil) vs
(genuine) + (encryption foil)

→ encryption of sensitive design information via physics
→ only check if results match
→ “physical cryptography”

different line spectra for U-235, U-238, Pu-239, Pu-240…

U-235 NRF spectrum
Information security challenges

1. First layer of security: foil thickness X and warhead thickness D are both unknown and both affect the NRF rate
 - One equation, two unknowns
 - Problem: build a system of equations, use neighboring lines, take ratios to cancel systematics, make some approximations
 \rightarrow infer foil X \rightarrow infer warhead D

1. Solution: introduce a cryptographic filter of warhead isotopes
 \rightarrow at most, can infer $D + \Delta D$
 \rightarrow bonus: inspector can bring the foil, and it can be thick to maximize stats

2. Other options: monochromatic beams or UMich ADCs
Verification setup at MIT HVRL

![Diagram of verification setup at MIT HVRL](image)

- **Radiator**
- **Collimator**
- **Proxy Warhead**
- **Optional Encryption Plates**
- **Cu**
- **Au**
- **DU, Al**
- **Pb**
- **LaBr₃**
- **2 × HPGe**
- **NRF γ**
- **DU/Al Encryption Foil**

(top view, not to scale)
Verification experiments

- Radiator (Cu + Au)
- Warhead proxy
 - Genuine: DU + plastic
 - Hoax: Pb + plastic
- Encrypting foil (DU + Al)

Consortium for Verification Technology
NRF measurements catch DU/Pb hoaxes

JR Vavrek, BS Henderson, A Danagoulian, PNAS 115 (17) 4363-4368, 2018
(See also Kemp et al, PNAS 113 (31) 8618-8623, 2016)
Diagnostics allow cross section extraction

• Multiple additional diagnostics from verification measurements:
 – Accelerator current readout
 – Downbeam bremsstrahlung flux monitor (LaBr$_3$)

• Systematics across different:
 – Detectors
 – Energies
 – Proxy warheads

Can use verification data to make absolute NRF cross section measurements!
Example model for extraction

Semi-analytical model ("Model 0"):

Data extraction:

Model:

\[
\frac{d^3 N}{dE d\Omega dx} = \phi_t(E) \mu_{NRF}(E) \frac{W(\theta)}{4\pi} \exp \left\{ -x \left[\mu_{NRF}(E) + \mu_{\text{att}}(E) + \frac{\mu_{\text{att}}(E')}{\cos \theta} \right] \right\} \epsilon_{\text{int}}(E') P_f(E')
\]

- really Γ, not μ
- ‘model’ can be Geant4
First, compare **forward** models to data

Ratios of absolute NRF count rates, model over data:

<table>
<thead>
<tr>
<th>NRF line</th>
<th>Avg model/obs ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-238 2.176 MeV</td>
<td>1.22 ± 0.03</td>
</tr>
<tr>
<td>U-238 2.245 MeV</td>
<td>1.18 ± 0.04</td>
</tr>
<tr>
<td>Al-27 2.212 MeV</td>
<td>1.09 ± 0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model #</th>
<th>Avg model/obs ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 0</td>
<td>1.20 ± 0.01</td>
</tr>
<tr>
<td>Model 1</td>
<td>1.11 ± 0.01</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.11 ± 0.01</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.14 ± 0.02</td>
</tr>
</tbody>
</table>

More Geant4-reliant

Average: 1.14 ± 0.02 (stat) ± 0.06 (sys)

Predicted absolute NRF count rates agree with data to ~15%!
Then, invert the model to find cross sections

(really level widths Γ_r)

<table>
<thead>
<tr>
<th>NRF line</th>
<th>Extracted level width Γ_r [meV]</th>
<th>Approx. level width ratio, data/literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-238 2.176 MeV</td>
<td>37 ± 1 ± 3</td>
<td>0.65</td>
</tr>
<tr>
<td>U-238 2.245 MeV</td>
<td>23 ± 1 ± 2</td>
<td>0.78</td>
</tr>
<tr>
<td>Al-27 2.212 MeV</td>
<td>15 ± 0.3 ± 1</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Non-linear dependence of NRF count rate on Γ_r
- makes NRF cross section extraction harder (more sensitive to error)
- makes NRF count rate prediction easier (less sensitive to error)

Approximate validation, derived from absolute measurements
(under review at Phys Rev C)
MIT/LLNL/TUNL Pu-239 NRF analysis

• Pu-239 direct NRF experiments at HiγS in 2010-11
 – specifically designed for absolute cross section measurements
 – aim for < 5 % cross section uncertainty
 – also extract level spin and parity J^π

• Aims to improve on existing data (Bertozzi et al, PRC 2008):
 – cross section uncertainties of 15-75%
 – no J^π determined
 – normalized against Al-27 2.212 MeV NRF line
HlγS facility at Duke

- laser Compton backscatter from ~300 MeV, 75 mA e⁻ beam and ~1000 nm free electron laser
- produces ~2 MeV quasi-monoenergetic photon beam (~1% FWHM, 10^7/s, quasi-CW, linearly polarized)
CVT Impact

• Pu-239 collaboration with LLNL/TUNL made possible by CVT

• Warhead verification project red-teamed by PNNL

• Possible future collaboration through postdoc positions
Conclusions

1. Developed an NRF-based warhead verification technique with high (> 5 σ) hoax-resistance

2. Validated and measured literature NRF cross sections for U-238 and Al-27 in an approximate but absolute sense

3. Working on analyzing Pu-239 NRF cross sections using a dedicated absolute measurement
The Consortium for Verification Technology (CVT) would like to thank the NNSA and DOE for the continued support of these research activities.

This work was funded by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534