
BACKGROUND AND MOTIVATION
• Special nuclear material (SNM) emits time correlated neutrons and gamma rays in multiplicities.

The multiplicity rates are characteristic to isotopes.
• Detected multiplicity rates (singles, doubles, and triples) can be used to analytically calculate

sample parameters related to the mass, multiplication, and composition of an unknown sample; this
technique is known as neutron multiplicity counting (NMC). See Refs. [1-4].

• This uncertainty quantification (UQ) allows us to measure until a precision is met instead of
measuring for a fixed amount of time.

• UQ gives a quantitative confidence interval which is needed in treaty verification, safeguards,
materials management, and forensics.

• UQ can be used to perform sensitivity analysis which informs system design and parameters.
• This UQ method allows us to study the contribution of uncertainty by individual variables and it

allows us to study covariances.
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THEORY
• For more information regarding the derivation of the analytic uncertainty equations or fast-neutron 

multiplicity counting, see Refs. [5] and [1] respectively.
• Sample Pulse Train:

• More definitions:
• 𝐵" 𝜏 ≔	number of windows 𝜏 with exactly 𝑥 signals after 𝐾 random-triggered windows
• 𝑁" 𝜏 ≔	number of windows 𝜏 with exactly 𝑥 signals after 𝑁) signal-triggered windows
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EXPERIMENT
The FNMC system was used to measure a mixed plutonium source.  The plutonium was in the form of metal plates (with 4.72 
g 240Pu effective mass per plate) and the sample mass was varied by varying the number of plates (1, 3, 5, or 7).  The 
collection time was varied between 1 and 30 minutes.  The experiment geometry and setup can be seen in Figure 2.

Fig 2. (Left) photograph of the experimental setup of the FNMC system.  (Right) the 
MCNPX-PoliMi simulation model used to determine the detection efficiencies. 
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• 𝐹 ∶=	Fission rate = 	𝐹(𝑆, 𝐷, 𝑇)
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Fig 1. The emission-detection-processing path for fast-neutron multiplicity counting (FNMC).

RESULTS
The detected neutron multiplicity distribution was processed with factorial moment counting to determine the multiplicity rates.
Next, the FNMC equations were used to calculate the sample effective mass. Then, the uncertainty (one standard deviation) 
was calculated in three ways: (1) by using the analytic equations that account for covariance Ref. [5], (2) by using the same
equations as case (1) but omitting the covariance terms, and (3) by assuming S, D, and T are independent, Poisson random 
variables Ref. [6].  The results are tabulated in Table 1 and are depicted in Figure 3.

Fig 3. (Left) plot of the relative uncertainty as a function of total measurement time for a single plutonium plate (4.72 g).
(Right) plot of the relative uncertainty as a function of the 240Pu effective mass for a total measurement time of 10 minutes.
The power-fits vary as 1/ 𝑥� .

Table 1. The 1-σ relative uncertainty in the estimated effective mass, calculated including 
and excluding the covariance, and by assuming S, D, and T are Poisson random variables.

DISCUSSION OF RESULTS
• The relative uncertainty decreases as a function of increasing measurement time/sample effective mass for 

fixed sample effective mass/measurement time…the decrease varies as 𝑥@
?
C, just as Monte Carlo convergence.

• In general, the uncertainties calculated under the Poisson assumption deviate from the uncertainty calculated 
with the analytic equations omitting the covariance terms (assuming independence) by less than 3%.

• As seen in Figure 3, including the covariance terms reduces the relative uncertainty.  
• As seen in Figure 4, an optimal measurement time can be pre-determined when given a refinement criterion.  

For example, if the criterion for increasing the total measurement time by one minute is a reduction in the 
relative uncertainty by 7%, a one-minute measurement time is sufficient (since increasing the measurement 
time to two minutes only reduces the relative uncertainty by 6.4%).   

CONCLUSIONS
• Given a refinement criterion, an optimal measurement time can be determined.  Furthermore, a measurement 

can last until a certain precision is met as opposed to running for an arbitrary amount of time.
• Inclusion of the covariance terms results in a more accurate uncertainty that is less than the estimated 

uncertainty when the covariance terms are omitted.  This means that the desired precision is truly reached 
earlier, shortening the total measurement time, and therein reducing procedural and operational costs.

• Neutron multiplicity rates are not independent, Poisson random variables; they inherently covary and are 
dependent on one another.
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Fig 4. An annotated plot of relative uncertainty vs. measurement time, showing the reduction in relative uncertainty
between various total measurement times.


