Motivation and Introduction

- Highly enriched uranium (HEU) is arguably the most challenging material for nuclear security.
- Gamma rays emitted by HEU are low energy and easily shielded, and it passively emits very few neutrons.
- Active interrogation with photons or neutrons is likely necessary to detect shielded HEU.
- We are developing organic scintillator based systems to detect photon induced prompt fission neutron detection.
- This will enable the application of commercially available linacs to reduce the cost and complexity of active interrogation systems.

Varian M9 Linear Accelerator

- The linear accelerator is a commercial available Varian model, originally for medical applications.
- The electron energy is fixed at 9 MeV, while pulse rate can be adjusted to either 25 or 250 Hz.

<table>
<thead>
<tr>
<th>Varian M9 Linac Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Endpoint Energy</td>
</tr>
<tr>
<td>Pulse Rate</td>
</tr>
<tr>
<td>Average Current</td>
</tr>
<tr>
<td>Converter: Copper backed tungsten, no spectral filtering</td>
</tr>
</tbody>
</table>

Shielding Design

- The accelerator laboratory is in the basement of the University of Michigan Nuclear Engineering Laboratory, so is shielded well in most directions.
- However, the beamline is directed towards a storage room in an adjacent building.
- A beamstop is simulated as 8” thick lead with a 1” BPE coating.

Experiment Planning

- A shielding enclosure was provided by Rapiscan Systems, developed for cargo screening testing.
- The accelerator head rolls into the enclosure on an aluminum rack.
- A tungsten and lead collimator is centered around the converter.
- Borated polyethylene shields neutrons produced in the high-Z collimator.

Accelerator Laboratory Space

- Target and detectors can be placed ~15 m from the accelerator, with the beam 3 ft off the floor.
- The beam has a 22 cm radius at 15 m.

Conclusions

- Interrogation of targets with a 9 MV linac will allow for investigation into scintillator based active detection methods.
- These methods will enable the use of commercially available accelerators and detectors in nuclear security applications.
- The construction of this facility is progressing well, and will be open for collaboration on experiments when complete.

This work was funded in part by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534.