Temperature Dependence of Organic Scintillator Detectors
Aditi Rajadhyaksha, Ricardo Lopez-Lemus, Ruby Araj, Patricia Schuster
Consortium for Verification Technology (CVT)

Background

- Organic scintillator detectors are commonly used in field-deployable radiation detection systems
- Field-deployable detection systems include MINER, RadMAP, UTK & Oak Ridge National Laboratory’s mobile trailer-based system
- Temperature dependence observed in anthracene organic scintillator detectors[1]
- Objective: characterize temperature dependence of stilbene and EJ-309 liquid organic scintillator detectors

Set Up

- Climate chamber
- Pulsed neutron source
- Temperature probe
- Organic scintillator material
- Photomultiplier Tube
- High voltage
- Digitizer

Analysis Methods

Light Output

- Light output spectrum is a histogram of L values
- Compton edge used as a reference point to determine if the light output spectrum changes as a function of temperature

Pulse Shape

- Pulse shape distribution: 2D histogram of S value vs. L value
- Get S distribution by taking all events at 478 keV (Compton edge position)
- Gaussian fit to find the centroid value
- Use centroid value as a reference point to measure expected pulse shape events at 478 keV as a function of temperature

Pulse Shape Discrimination

- Pulse shape distribution obtained from a Cs-252 source
- Get S distribution by taking all events at 478 keV (Compton edge position)
- Double Gaussian fit
- Calculate figure of merit (FOM) and observe how it changes as a function of temperature

Results

Conclusions and Future Work

- Temperature dependence has been observed in stilbene and EJ-309 in light output and pulse shape
- Pending questions: Why is there a stronger effect in anthracene? Is this a scintillator response or a photomultiplier tube response?
- Future work includes measuring pulse shape discrimination as a function of temperature, measuring pulse shape and light output of neutrons as a function of temperature, characterizing the temperature dependence of the newly developed organic scintillator glass[2], and studying the physical properties governing temperature dependence

Author Bio

Aditi Rajadhyaksha is a third year undergraduate student studying Computer Science. She performed this work as a Consortium for Verification Technology fellow this past summer. She also interned at Sandia National Laboratories in Livermore this past summer, where she worked on setting up and characterizing an Active Well Coincidence Counter with Dr. Scott Kiff.

Her future work includes continuing her temperature dependence research by measuring pulse shape discrimination as a function of temperature and measuring the temperature dependence of other scintillator materials. Next semester, she will start working on a kinetic Monte Carlo software to further study the effect of temperature on organic scintillator detectors.

References


This work was funded in-part by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534