
Consortium for Verification Technology

Deep Generative Models for 
Anomaly Detection 

Lawrence	Carin
Duke	University



Consortium for Verification Technology

Motivation
- In	many	DOE	sensing	scenarios,	we	may	have	knowledge	of	what	“typical”

looks	like,	but	atypical/anomalous	may	be	manifested	in	unanticipated	ways

- Desire	statistical	model	of	typical	data,	with	ability	to	compute	the	likelihood	that
new	data	under	test	matches	the	statistical	model

- A	classic	problem,	but	traditional	methods	(maximum	likelihood)	fail

- There	has	recently	been	a	“revolution”	in	the	ability	to	learn	generative	statistical
models	from	which	highly	realistic	(typical)	data	may	be	drawn

- Extend	those	such	that	we	may	use	such	models	to	compute	the	likelihood	that
new	test	data	match	the	learned	generative	statistical	model
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Traditional	Deep	Learning:	Feed-Forward
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- Excellent	model	for	performing	classification	with	known labels
- Requires	large	quantity	of	labeled	data	for	all	targets	of	interest
- All	training	images	must	be	labeled
- Less	appropriate	for	many	DOE	monitoring	applications
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Traditional	Deep	Learning:	Feed-Forward
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- Excellent	model	for	performing	classification	with	known labels
- Requires	large	quantity	of	labeled	data	for	all	targets	of	interest
- All	training	images	must	be	labeled
- Less	appropriate	for	many	DOE	monitoring	applications

v Doesn’t	leverage	vast	quantities	of	unlabeled	data
v Not	appropriate	for	previously	unseen	targets	(“black	swan”)
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Generative	Model:	From	Noise	to	Image
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- Vector	z drawn	from	simple	distribution	(e.g.,	isotropic	Gaussian)

- Via	sequence	of	deconvolutions	and	nonlinearities,	generate	an	image

- Transform	RVs	z drawn	from	a	simple	distribution	to	RVs	drawn	from	distribution	
for	the	data	of	interest,	with	the	nonlinear	functional	transformation	learned
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Training	with	Unlabeled	Images
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Example	Images
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- We	have	a	model	capable	of	synthesizing	realistic	images

- Implemented	by	drawing	from	simple	distribution,	and	then	transforming	
drawn	RVs,	via	deep	nonlinear	functional	operation

- We	do	not	have	an	explicit	functional	relationship	for	statistical	distribution	of	data

- Cannot	assess	whether	new	data	are	consistent	with	the	distribution,	and	this	is	
needed	for	anomaly	detection

Problem
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- The	encoder	“arm”	of	this	model	is	like	the	supervised	classifier

- The	decoder	arm	of	this	model	is	like	the	generative	model

- Put	these	two	together:	can	train	on	labeled	and unlabeled	data

Convolutional	Autoencoder
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- A	direct	implementation	of	the	convolutional	autoencoder does	not yield
a	model	that	matches	the	statistics	of	the	data	of	interest

- This	is	connected	to	fundamental	limitations	in	learning	a	generative	statistical
model	via	maximum-likelihood	learning

- Have	developed	a	new	symmetric convolutional	variational autoencoder

- Model	synthesizes	highly	realistic	data

- Also	allows	inference	on	test	data,	quantififying fit	of	test	images	to	learned	
statistical	model

Symmetric	Variational Autoencoder
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Synthetic	Images,	ImageNet	Training
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Image	Transformation
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Synthesis	&	Adjusted	Attributes
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Synthesis	and	Attributes
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Summary
- In	many	DOE	sensing	scenarios,	we	may	have	knowledge	of	what	“typical”

looks	like,	but	atypical/anomalous	may	be	manifested	in	unanticipated	ways

- Desire	statistical	model	of	typical	data,	with	ability	to	compute	the	likelihood	that
new	data	under	test	matches	the	statistical	model

- A	classic	problem,	but	traditional	methods	(maximum	likelihood)	fail

- There	has	recently	been	a	“revolution”	in	the	ability	to	learn	generative	statistical
models	from	which	highly	realistic	(typical)	data	may	be	drawn

- Extend	those	such	that	we	may	use	such	models	to	compute	the	likelihood	that
new	test	data	match	the	learned	generative	statistical	model


