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Motivation
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In many DOE sensing scenarios, we may have knowledge of what “typica
looks like, but atypical/anomalous may be manifested in unanticipated ways

Desire statistical model of typical data, with ability to compute the likelihood that
new data under test matches the statistical model

A classic problem, but traditional methods (maximum likelihood) fail

There has recently been a “revolution” in the ability to learn generative statistical
models from which highly realistic (typical) data may be drawn

Extend those such that we may use such models to compute the likelihood that
new test data match the learned generative statistical model
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Traditional Deep Learning: Feed-Forward
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- Excellent model for performing classification with known labels
- Requires large quantity of labeled data for all targets of interest
- All training images must be labeled

- Less appropriate for many DOE monitoring applications
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- Excellent model for performing classification with known labels
- Requires large quantity of labeled data for all targets of interest
- All training images must be labeled

- Less appropriate for many DOE monitoring applications

+» Doesn’t leverage vast quantities of unlabeled data
** Not appropriate for previously unseen targets (“black swan”)
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Generative Model: From Noise to Image

- Vector z drawn from simple distribution (e.g., isotropic Gaussian)
- Via sequence of deconvolutions and nonlinearities, generate an image

- Transform RVs z drawn from a simple distribution to RVs drawn from distribution
for the data of interest, with the nonlinear functional transformation learned
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Training with Unlabeled Images
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Example Images
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Problem
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We have a model capable of synthesizing realistic images

Implemented by drawing from simple distribution, and then transforming
drawn RVs, via deep nonlinear functional operation

We do not have an explicit functional relationship for statistical distribution of data

Cannot assess whether new data are consistent with the distribution, and this is
needed for anomaly detection
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Convolutional Autoencoder
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The encoder “arm” of this model is like the supervised classifier

The decoder arm of this model is like the generative model

Put these two together: can train on labeled and unlabeled data
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Symmetric Variational Autoencoder

- Adirect implementation of the convolutional autoencoder does not yield
a model that matches the statistics of the data of interest

- This is connected to fundamental limitations in learning a generative statistical
model via maximume-likelihood learning

- Have developed a new symmetric convolutional variational autoencoder

- Model synthesizes highly realistic data

- Also allows inference on test data, quantififying fit of test images to learned
statistical model
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Synthetic Images, ImageNet Training
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Image Transformation
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Synthesis and Attributes
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Summary
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In many DOE sensing scenarios, we may have knowledge of what “typica
looks like, but atypical/anomalous may be manifested in unanticipated ways

Desire statistical model of typical data, with ability to compute the likelihood that
new data under test matches the statistical model

A classic problem, but traditional methods (maximum likelihood) fail

There has recently been a “revolution” in the ability to learn generative statistical
models from which highly realistic (typical) data may be drawn

Extend those such that we may use such models to compute the likelihood that
new test data match the learned generative statistical model
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