James Miller, Rian Bahran, and Jesson Hutchinson
Nuclear Engineering and Nonproliferation Division
Los Alamos National Laboratory

Consortia for Verification Technologies Workshop
Ann Arbor, MI

20 October 2016
20-year annualized return on educational investment of 12% (the S&P 500 managed just 7.8%). Engineers were also least dependent on institutional prestige: graduates from less-selective schools experienced only a slight decrease in average returns.”

![Graph showing the relationship between university admission rate and 20-year average annual return on degree.](image-url)
We are in northern New Mexico, 35 miles from Santa Fe.
With one of the highest concentrations of Ph.D. holders in the nation, Los Alamos, NM, stands out as the "smartest" small town. Innovative education, health and recreational programs have earned the city and surrounding county national recognition, including such titles as "healthiest" and "wealthiest" places in America.

The city's location atop the Pajarito Plateau, near the Jemez Mountains, not only provides breathtaking views but gives residents easy access to high-altitude sports such as mountain biking, skiing, rock climbing and hiking. An urban trail system connects to forest paths. Golf courses, parks, a skating rink and aquatic center provide even more recreational options. Cultural landmarks like the Bradbury Science Museum, Fuller Lodge Art Center, and the Los Alamos Little Theatre frequently hold special events and educational programs for children and adults.

The Los Alamos National Laboratory employs more than 7,000 people and the area's science-based businesses attract top talent from across the globe, making the city the most culturally diverse in New Mexico. Scientific endeavors such as the Manhattan Project, the development of super computing, the Human Genome Projects and the creation of the world's fastest movie camera, reflect the community's innovative spirit. Research and development continues to be the driving economic force. Local companies support initiatives that get children interested in science, technology and art.

LANL is a National Nuclear Security Administration (NNSA) Laboratory within the U.S. Department of Energy (DOE)
LANL’s Strategic Plan is aligned with the Department of Energy (DOE), the National Nuclear Security Administration (NNSA)

The **NNSA** plays a critical role in ensuring the security of our Nation by:

- maintaining the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear testing

 (NA-10, FY 17 Budget Request ~9.2 bn)

- reducing the global danger from the proliferation of nuclear weapons and materials

 (NA-20, FY 17 Budget Request ~1.8 bn)

- providing the U.S. Navy with safe and effective nuclear propulsion

 (NA-30, FY 17 Budget Req ~1.4 bn)

- providing domestic and international capabilities in counterterrorism and counter-proliferation, and nuclear incident response

 (NA-40/80)
LANL’s mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges.

Total Employees 10000
Technical Staff 4000
PhD 3000
Post-docs 350
Students 1100
Operating budget ~$2.4 B
Land area ~40 square miles
We are managed by Los Alamos National Security, LLC

Managed and operated by the University of California
1943 to 2006

Now managed by Los Alamos National Security (LANS), LLC
2006 to present
Work at LANL is organized under five lines of business:

- **Director’s Office**
 - Charlie McMillan, Director
 - Rick Kacich, Deputy Director
 - Dave Lyons, Executive Director

- **Principal Associate Directors**
 - Alan Bishop, Science, Technology, and Engineering
 - Bob Webster, Weapons Programs
 - Terry Wallace, Global Security
 - Craig Leasure, Operations and Business
 - Larry Simmons (interim), Capital Projects

- **Lines of Business**
 - Science, Technology, and Engineering
 - Weapons Programs
 - Global Security
 - Operations and Business
 - Capital Projects
Nuclear Nonproliferation and Security (NNS)
Prevent nuclear proliferation and improve nuclear security, with focus on diplomacy, cooperation, and international partnerships.
The NNS Program focuses on preventing nuclear proliferation and enhancing nuclear security

- Strengthen global nuclear safeguards and security
- Support treaty monitoring mission of nuclear detonation detection
- Detect foreign SNM production or weaponization
- Secure vulnerable rad/nuc materials & reduce global HEU and Pu inventories
- Deter and detect illicit movement of material

Motivation & Planning
Material Acquisition
Design & Fabrication
Storage & Movement
Device on Target
Response & Recovery
Forensics
50 years of direct support to IAEA

- Ongoing tech-development projects
- Development of nearly every neutron non-destructive assay instrument used by IAEA
- Training every IAEA inspector at Los Alamos
- Staff on assignment in Vienna
- NWAL analytical lab

Strengthen global nuclear safeguards and security

International nuclear security engagement and cooperation

Technology and expertise to support arms control treaties and multilateral agreements
LANL’s unique infrastructure supports both our Nuclear Weapons Program and our Global Security Mission.

- 40 square miles
- 47 technical areas
- 1,000 buildings
- 13 nuclear facilities
Los Alamos laser for detecting nuclear material on Earth goes to Mars to determine habitability

- Laser-Induced Breakdown Spectroscopy (LIBS) was a Laboratory-Directed Research and Development (LDRD) project to look for material within gloveboxes at LANL’s plutonium facility
- A backpack LIBS unit has been developed for consideration by the IAEA
- LIBS is the basis for the ChemCam laser unit on the current Mars Curiosity rover; the next-generation SuperCam instrument has been selected for the Mars 2020 mission, which endeavors to pave the way for human visitation to the Red Planet
Background

• Monte Carlo transport codes like MCNP use continuous-energy cross sections (interpolated from ENDF data) to provide accurate probabilities of interactions at all energies and fluxes.

• Link to depletion code ORIGEN-S or CINDER90 through Monteburns provides 3-D reactor simulation. Link to thermo-mechanical code BISON for additional feedback (temperature and swelling) is being developed.

Applications

• Boiling Water Reactor (with discrete axial zones).
• Heavy Water Reactor (i.e. CANDU).
• Gas-Cooled Reactor with actual operating conditions.
• Design of space and special purpose reactors.
• Creation of spent fuel libraries representing neutron and gamma emissions for simulation of Nondestructive Assay instrument performance.
• Generation of database with irradiated fuel compositions for various reactor types.
Event-by-Event Simulation of Fission Fragment Evaporation

- Access to prompt fission neutrons and γ rays
- Multiplicity-dependent spectra
- Distributions $P(\nu)$, $P(N_\gamma)$
- Correlations in energy, angle and multiplicity

Fission event generators (CGMF, FREYA) implemented in MCNP6.2

- MCNPTools to analyze PTRAC list-mode output
- Advanced simulation of detector response (DRiFT)
- Close collaboration with experimentalists (LANL, UM)

Plans to expand calculations to

- More isotopes
- Photo-fission reactions
- Perform sensitivity calculations & UQ
- Independent and Cumulative Fission Yields

Correlated Fission Events
LANL POC: Patrick Talou – talou@lanl.gov
Working to establish discovery-to-commercialization pathways for:

- High-performance scintillator and semiconductor materials
- Scintillator detector materials suitable for large low-cost detectors

Uses energy resolved neutron imaging and neutron diffraction

Next steps include:

- Measuring lattice strains as a function of dopant concentration from powders
- Model stresses during cooling to identify methods to avoid cracking
- Improving analysis techniques for dopant concentration
Working to reduce the size, weight, and power consumption while increasing performance

Utilizing a stepwise process to employ a series of dye-containing thin films, wavelengths of scintillation photons are shifted (low to high) to allow more efficient transfer and detection

The impact of this project will enhance scintillator performance by:

• Decreasing time of detection
• Decreasing false alarm rates
• Increasing spectral identification capabilities

Next Steps include:

Design and development of non-hygroscopic crystals
• Single layer coatings with YSO
• Multilayer coatings with LiCAF:Ce

LANL POC: Shawn Tornga – tornga@lanl.gov
With increases stores of spent reactor fuel, more and more is being transitioned to dry storage

- Typically under IAEA safeguards
- Seals affirm continuity of knowledge of contents

Cosmic ray muons can penetrate cask shielding without intrusion.

- To recover from a loss of continuity of knowledge is hazardous, costly, and invasive

Next steps include:

- Data analysis from recent cask data taken at Idaho National Laboratory
- Development and testing of a fieldable instrument in an operational environment.
Working to provide immediate, in-field isotopic analysis of uranium samples

- Allows for reassessment during the course of an inspection
- Direct solid sample analysis (no preparation and no waste)

How it works:

- Development of a low-power microwave oven (2500°C)
- Collimated atomic beams using mg’s of sample in vacuum
- Laser absorption spectroscopy using a diode laser
- Ultra-narrow laser line width to resolve isotopic ratios.

Next steps include:

- Application to and analysis of oxides
- Accuracy and precision determination
- Developing a fieldable prototype
Differential and Integral Experiments for Nuclear Data and Modeling Validation

Predictive Radiation Transport Simulation Pipeline: Comprehensive, Complex, and (reasonably) Coordinated

Figure adopted from Morgan White (LANL)
The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments on critical assemblies with fissile material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical.
NA-22 Consortia Collaborations at NCERC-DAF

- Unique facility/capabilities for all three consortia
 - Facility (DAF-NCERC) = Category I Special Nuclear Material
 - Experimental Expertise = Experiment Design Guidance
 - In 2014, LANL performed 49 critical experiments and 46 Radiation Test Object operations which includes handling of large quantities of SNM including Pu, U and Np-237.
 - 2015: 62 critical experiments, 77 RTO builds
 - University Consortia
 - CVT/CNEC Focus - Passive and Active Measurements
 - NSSC Focus (discussions ongoing):
 Critical experiments for validation originally proposed in Response to DE-FOA-0001300 for Nuclear Data + Modeling and Simulation thrust

 ….but expanding to forensics, passive/active detection measurements etc…
NSSC Technical Tour at the DAF

- Observed partial CVT/CNEC measurements.
- Toured critical experiments facilities.
- Excursion to Sedan Crater.
- Discussed path forward on collaboration.
LANL Nonproliferation Summer School

Dr. G. Robert Keepin – An Early Architect of International Nuclear Safeguards R&D

Nonproliferation Summer School

at Los Alamos National Laboratory

Part I: Seminars, Tours, Hands-On Training (4 weeks in June - all participants)

- Nuclear Nonproliferation Concepts & R&D Efforts (1 week)
- Treaty Verification & Arms Control Intensive Course (1 week)
- Hands-On Training & Technical Tours (2 weeks)
 - Hands-on training at the LANL safeguards laboratory where all IAEA inspectors train.
 - Hands-on training at the National Criticality Experiments Research Center at the Nevada National Security Site where critical/subcritical experiments are performed with significant quantities of special nuclear material for various national security missions.
 - Tour of the Los Alamos Neutron Science Center (LANSCE) Accelerator.
 - Tour of the Sedan Crater - located at the Nevada National Security Site - formed in 1952 as part of an excavation experiment using a 104-kiloton thermonuclear device.
 - Tours of various Sandia National Laboratory Facilities.
 - Tours of various Atomic and Nuclear Museums (Los Alamos, Albuquerque, Las Vegas).

Part II: Internship/Science Challenge (up to 6 weeks in July - select participants)

Throughout the internship, students will spend most of their time working either individually or in small teams with a LANL staff member on a research project or science challenge that has a strong connection to nuclear nonproliferation.

*Applicants may also elect to apply to Part I (first 4 weeks) of the Summer School only.

Eligibility: Participants must be U.S. citizens enrolled in accredited full-time undergraduate or graduate programs in science & engineering. Students enrolled in international affairs or policy programs may also apply. Limited slots are also available for faculty that are interested in the subject area.

Cost: Tuition is free for all accepted participants. A stipend may be provided for students that are also accepted into the research (internship) portion of the summer school & are in need of financial support.

Deadlines: Application material should be emailed (pdf only) to KEEPINschool@lanl.gov by Dec 31st, 2016. Applications for Part I of the Nonproliferation Summer School must include a Resume/CV with updated contact information (Email, Phone, Address). If you are also applying for Part II of the Summer School, you must also provide a 1-page cover letter, an unofficial transcript, and a letter of university support. Applicants will be notified of decisions by March 1st.

Questions? Please email KEEPINschool@lanl.gov