Timely Verification at Large-scale Gas Centrifuge Enrichment Plants

Mark Walker, CVT Graduate Associate

CVT Workshop 2016
Ann Arbor, MI
What do ongoing trends in gas centrifuge enrichment technology mean for IAEA safeguards?

What can the IAEA do to keep pace with these trends?
BACKGROUND

WHERE ARE THE GOALPOSTS?

Comprehensive Safeguards Agreements (NNWS), Voluntary Offer Agreements (NWS)

HSP

- Goals: Detect diversion of declared material AND facility misuse
- Traditional item-based safeguards measures
- Limited Frequency Unannounced Access (LFUA) to cascade halls

RMA

Revised Model Approach (2006)
- Additional goal: Detect excess LEU production using undeclared material
- Short-notice random inspections (SNRIs) to feed/withdrawal areas to verify that only declared material is fed

CONSORTIUM for VERIFICATION TECHNOLOGY
WHAT HAS CHANGED SINCE 2006?

Pre-Fukushima: Construction of new GCEPs, Expansion of existing ones
• New plants: URENCO USA (4.7 MSWU), Georges-Besse II (7.5 MSWU)
• Expansions: Gronau UTA II (2.4 MSWU), Almelo expansion (1.8 MSWU)

Post-Fukushima: 60 MSWU supply glut accumulates
• This LEU is somewhere... not necessarily in UF₆, however.

Bottom line: More capacity per site, More LEU in storage
What IAEA safeguards issues do these dynamics raise?
What IAEA safeguards issues do these dynamics raise?

Timely detection of HEU production
What IAEA safeguards issues do these dynamics raise?

- Timely detection of HEU production
- Efficiency of traditional SG measures
What IAEA safeguards issues do these dynamics raise?

Timely detection of HEU production

Efficiency of traditional SG measures
What might an HEU production scenario look like at a modern commercial GCEP?
SIMULATING A MISUSE SCENARIO

SMITH, LEBRUN & LABELLA, JNMM 2013:

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>tSWU/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCEP</td>
<td>1</td>
<td>4000</td>
</tr>
<tr>
<td>Units/GCEP</td>
<td>8</td>
<td>500</td>
</tr>
<tr>
<td>Cascades/Unit</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

Further assumed here:

- 1000 Centrifuges/Cascade: 50 kgSWU/yr
- 11 enriching stages, 4 stripping stages
- Max enrichment = 5%
- 10 g U/centrifuge
- Separation factor $\gamma = R'/R'' = 1.44$
VISUALIZING A MISUSE SCENARIO

A NOTIONAL (5-CASCADE) PRODUCTION UNIT:

Feed and Withdrawal Stations

Feed

Feed

Tails

Tails

Product

Header Connection Area, with Unit Headers

Cascade Hall, with Cascade Headers
VISUALIZING A MISUSE SCENARIO

A NOTIONAL (5-CASCADE) PRODUCTION UNIT:

- Feed and Withdrawal Stations
 - Feed
 - Feed
 - Tails
 - Tails
 - Product

- Header Connection Area, with Unit Headers

- Cascade Hall, with Cascade Headers
VISUALIZING A MISUSE SCENARIO

A NOTIONAL (5-CASCADE) PRODUCTION UNIT:

Feed and Withdrawal Stations

- Feed
- Feed
- Tails
- Tails
- Product

Header Connection Area, with Unit Headers

Cascade Hall, with Cascade Headers
VISUALIZING A MISUSE SCENARIO

A NOTIONAL (5-CASCADE) PRODUCTION UNIT:

Cascade Hall, with Cascade Headers

Feed and Withdrawal Stations

- Feed 5.1%
- Feed 5.1%
- Tails 4.4%
- Tails 4.4%
- Product 94.1%

Header Connection Area, with Unit Headers

Cascade Hall, with Cascade Headers
IS IT WORTH RESHAPING CASCADES?

IN THIS CASE, PROBABLY NOT.

TRADEOFFS OF NO RESHAPING

Pros: Expedient, Simple, Additional enrichment gain from off-normal stage cuts

Cons: Some loss of nominal SWU capacity

3 CASCADE GROUPS (2 IN MODIFIED UNIT)

<table>
<thead>
<tr>
<th></th>
<th>Feed Enrichment</th>
<th>Product Enrichment</th>
<th>Tails Enrichment</th>
<th>tSWU/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0.72%</td>
<td>5.11%</td>
<td>0.29%</td>
<td>50</td>
</tr>
<tr>
<td>Mid Group</td>
<td>5.11%</td>
<td>34.0%</td>
<td>2.29%</td>
<td>49.5</td>
</tr>
<tr>
<td>Top</td>
<td>34.0%</td>
<td>94.1%</td>
<td>28.1%</td>
<td>28.4</td>
</tr>
</tbody>
</table>
EQUILIBRATION IS QUICK.

5% → 34%

9 cascades
EQUILIBRATION IS QUICK.

5% → 34%

9 cascades
EQUILIBRATION IS QUICK.

5% → 34%
9 cascades

34% → 94%
1 cascade
PRODUCTION RATE ESTIMATES

MODE 1:
No LEU sitting around

While continuously producing LEU in unmodified units:

- 1 modified unit: ~0.5 SQ/day
- 2 modified units: ~1.0 SQ/day
PRODUCTION RATE ESTIMATES

<table>
<thead>
<tr>
<th>MODE 1: No LEU sitting around</th>
<th>While continuously producing LEU in unmodified units:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 1 modified unit: ~0.5 SQ/day</td>
</tr>
<tr>
<td></td>
<td>• 2 modified units: ~1.0 SQ/day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODE 2: LEU sitting around</th>
<th>Modifying all 8 units and feeding them with on-hand LEU:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 10.8 SQ in 3 days</td>
</tr>
<tr>
<td></td>
<td>• With 2x tails recycling: 29 SQ in 7 days</td>
</tr>
</tbody>
</table>
PRODUCTION RATE ESTIMATES

<table>
<thead>
<tr>
<th>MODE 1: No LEU sitting around</th>
<th>MODE 2: LEU sitting around</th>
</tr>
</thead>
<tbody>
<tr>
<td>While continuously producing LEU in unmodified units:</td>
<td>Modifying all 8 units and feeding them with on-hand LEU:</td>
</tr>
<tr>
<td>• 1 modified unit: ~0.5 SQ/day</td>
<td>• 10.8 SQ in 3 days</td>
</tr>
<tr>
<td>• 2 modified units: ~1.0 SQ/day</td>
<td>• With 2x tails recycling: 29 SQ in 7 days</td>
</tr>
</tbody>
</table>

Both modes about a factor of 2 slower than idealized calculations would dictate
PRODUCTION RATE ESTIMATES

MODE 1: No LEU sitting around

While continuously producing LEU in unmodified units:
- 1 modified unit: ~0.5 SQ/day
- 2 modified units: ~1.0 SQ/day

MODE 2: LEU sitting around

Modifying all 8 units and feeding them with on-hand LEU:
- 10.8 SQ in 3 days
- With 2x tails recycling: 29 SQ in 7 days

Both modes about a factor of 2 slower than idealized calculations would dictate

Time for a weekend breakout?
What measures can the IAEA apply to detect HEU production in a timely manner?
DETECTING HEU PRODUCTION

Long-standing Measures

- LFUA Inspections
- Environmental Sampling
DETECTING HEU PRODUCTION

Long-standing Measures
- LFUA Inspections
- Environmental Sampling

Newer Unattended Measures (some under development)
- Online Enrichment Monitor (OLEM)
- Authenticated Load Cell Monitoring (LCM)
- Unattended Cylinder Verification Station (UCVS)
DETECTING HEU PRODUCTION

Long-standing Measures
- LFUA Inspections
- Environmental Sampling

Newer Unattended Measures (some under development)
- Online Enrichment Monitor (OLEM)
- Authenticated Load Cell Monitoring (LCM)
- Unattended Cylinder Verification Station (UCVS)

Detecting signatures of misuse ‘downstream’ from source
DETECTING HEU PRODUCTION

Long-standing Measures
- LFUA Inspections
- Environmental Sampling

Newer Unattended Measures (some under development)
- Online Enrichment Monitor (OLEM)
- Authenticated Load Cell Monitoring (LCM)
- Unattended Cylinder Verification Station (UCVS)

Detecting signatures of misuse ‘downstream’ from source

Detecting reconfiguration itself
DETECTING HEU PRODUCTION

Long-standing Measures
- LFUA Inspections
- Environmental Sampling

Newer Unattended Measures (some under development)
- Online Enrichment Monitor (OLEM)
- Authenticated Load Cell Monitoring (LCM)
- Unattended Cylinder Verification Station (UCVS)

Future Measures
- Unattended means for detecting piping reconfiguration in real time
- Unattended detection of hidden feed/withdrawal points

Detecting signatures of misuse ‘downstream’ from source

Detecting reconfiguration itself
UNATTENDED MEASURES FOR REAL-TIME RECONFIGURATION DETECTION

WITH INTERMITTENT DATA TRANSMISSION TO IAEA HQ
UNATTENDED MEASURES FOR REAL-TIME RECONFIGURATION DETECTION WITH INTERMITTENT DATA TRANSMISSION TO IAEA HQ

Electronic, remote-indicating seals on potentially significant sampling ports
UNATTENDED MEASURES FOR REAL-TIME RECONFIGURATION DETECTION
WITH INTERMITTENT DATA TRANSMISSION TO IAEA HQ

Electronic, remote-indicating seals on potentially significant sampling ports

IAEA surveillance cameras at cascade hall access points, and/or on sampling ports
UNATTENDED MEASURES FOR REAL-TIME RECONFIGURATION DETECTION
WITH INTERMITTENT DATA TRANSMISSION TO IAEA HQ

Electronic, remote-indicating seals on potentially significant sampling ports

IAEA surveillance cameras at cascade hall access points, and/or on sampling ports

Open path gas detection systems for HF (more research needed?)
UNATTENDED MEASURES FOR REAL-TIME RECONFIGURATION DETECTION
WITH INTERMITTENT DATA TRANSMISSION TO IAEA HQ

- Electronic, remote-indicating seals on potentially significant sampling ports
- IAEA surveillance cameras at cascade hall access points, and/or on sampling ports
- Open path gas detection systems for HF (more research needed?)
- Unattended NDA for detecting HEU presence in process areas
 Detector arrays are expensive. How about a roving roomba detector?
FINAL THOUGHTS ON TECHNOLOGY
Transmission frequency for new unattended technologies will depend on individual characteristics of GCEPs, and thus the feasibility of various HEU production scenarios.
Transmission frequency for new unattended technologies will depend on individual characteristics of GCEPs, and thus the feasibility of various HEU production scenarios.

Data authenticity, accuracy, and security are paramount.
Transmission frequency for new unattended technologies will depend on individual characteristics of GCEPs, and thus the feasibility of various HEU production scenarios.

Data authenticity, accuracy, and security are paramount.

Potential synergies of new systems with operator needs should be exploited.
- HF Detection -> Safety
- Seals on sampling ports -> Insider threat mitigation
SUMMARY
SUMMARY

The Challenge:

• New challenges to safeguards verification have arisen in the last decade, including timely detection of HEU production.
• Starting from a normal production scenario, production of an SQ of weapons-grade HEU could take place, conservatively, within a few days.
SUMMARY

The Challenge:

• New challenges to safeguards verification have arisen in the last decade, including timely detection of HEU production
• Starting from a normal production scenario, production of an SQ of weapons-grade HEU could take place, conservatively, within a few days

Potential Solutions:

• Unattended systems offer some improvements to detection timeliness for HEU production
• Unattended safeguards measures for detecting reconfiguration of piping and undeclared feed/withdrawal could pay further dividends.