

NEUTRON DETECTION FOR ZERO-KNOWLEDGE PROTOCOL

<u>Francesco d'Errico¹</u>, Alex Glaser², <u>Rob Goldston^{2,3}</u>, Sébastien Philippe², Chiara Romei¹

- ¹ Yale University, ² Princeton University,
- ³ Princeton Plasma Physics Laboratory

OUTLINE

- Zero-knowledge protocol for warhead verification
- Superheated emulsions (superheated drop "bubble" detectors)
- Neutron activation imaging

ZERO-KNOWLEDGE PROTOCOL (ZKP): ALICE CONVINCES BOB OF A CLAIM, WHILE REVEALING NOTHING BEYOND THE TRUTH OF HER CL AIM

Key Elements: Interaction and Randomness

ZKP WARHEAD VERIFICATION

Transmission Detectors **Emission Detectors**

Detector arrays to be preloaded by host with counts that sum with neutron radiographic image to N_{max} everywhere. ZKP: Inspector selects which preload goes with which object!

ZKP WARHEAD VERIFICATION

DETECTOR REQUIREMENTS NON-ELECTRONIC DETECTION & STORAGE

TRANSMISSION

- Capable of storing 5,000 10's of thousands of counts
 - Preloads indistinguishable from measurement counts
- Sensitive only to 14 MeV neutrons
 - Energy threshold ~10 MeV, insensitive to γ's
- 0.24% absolute detection efficiency gives 20,000 cts/hr

EMISSION (spontaneous and driven)

- Capable of storing thousands of counts
 - No imaging, so detectors may be ganged together
- Sensitive dominantly to fission neutrons
 - Energy threshold ~500 keV, insensitive to γ's

 (a 250 keV neutron source would eliminate all driven non-fission sources of neutrons above 500 keV)

- Fluorocarbon droplets in a steady superheated state.
- Vaporizations triggered by neutrons above selectable threshold energies.
- Can be totally insensitive to γ□ş.

- Energy thresholds depend on composition & temp.
- Accurate temperature control required
- ~3% absolute efficiency achievable

- Emulsified fluids can be chosen to respond only to high-LET radiation.
- Bubbles remain trapped after formation and can be counted with a variety of techniques (e.g., MRI, optical tomography, light scattering)

Scattered light

- Instant read out
- Count rate insensitive

Bubbles in commercial polymerbased detectors expand

Bubbles in aqueous gel do not.

NUCLEAR ACTIVATION IMAGING

- Detector is an array of activation slugs
 - ~ 3 cm long, 1.6 cm diameter
- Nb is an attractive mono-nuclidic option for transmission 93 Nb(n,2n) 92m Nb, $E_{th} = 9$ MeV, 10 d half-life
- In for emission detectors
- Count γ's in bank of well detectors

NUCLEAR ACTIVATION IMAGING

CONCLUSIONS

- Zero-knowledge protocol is a new approach based on differential radiography + differential emission
 - ZKP has unusual detector requirements
 - Key among them is reproducibility
- Superheated emulsions hold promise, R&D must tackle
 - Temperature sensitivity
 - Read out optimization
- Neutron activation imaging has different challenges
 - Potentially complex preloading
 - Maintenance of bank of γ detectors
- We are open to innovations. Come talk with us.

