

Nuclear Fuel Cycle and Proliferation Monitoring

John C. Lee University of Michigan

Outline

- Fuel cycle overview
- Used fuel reprocessing and management
- Proliferation risk of separations technology
- Examples of fuel cycle analysis
- Lattice physics modeling of fission products
- FP transport monitoring

Overview on Nuclear Fuel Cycle

- LWRs operate with once-through closed cycles using UO₂ with <5.0 wt% enrichment and discharge burnup of 40~50 MWd/kgHM.
- LWR used fuel composition:
 - 3~5% fission products
 - 1% transuranics, 0.1% minor actinides [Np, Am, Cm]
 - 94~95% U.
- Current French recycling strategy:
 - Separate MA + FP + assembly metal and store vitrified logs above ground
 - Recycle (Pu+U)O₂ [MOX] once only in PWRs, ½ core
 - Store once-recycled MOX assemblies above ground
 - PUREX process used for reprocessing and vitrification.
- Pyroprocessing technology used for U-Pu-Zr metallic fuel from sodium-cooled fast reactor and under development for LWR fuel.

Principal Steps of PUREX Process

Storage pool at La Hague

Vitrification cell at La Hague

Pyroprocessing Technology

- U-Pu metallic fuel is loaded at an anode in a molten salt electro-refiner.
- Electric current dissolves used fuel and plates out U-Pu on the cathode.

http://www.ne.anl.gov/About/headlines/20120723.shtml

Proliferation Potential of Separations Technology

- Aqueous Process (PUREX)
 - Separates SNM but the material is protected via safeguards steps and physical protection in production facilities.
 - Modifying extractants and/or reductants could yield a separated stream of SNM.
- Non-aqueous Process (Pyroprocessing)
 - Batch process involving electro-refining technology in molten salt.
 - FPs (lanthanides) are lumped with SNM providing proliferation barrier.
 - Chemical composition of the salt may be adjusted to collect SNM.
 - Primarily developed for reprocessing of U-Pu-Zr metallic fuel.
- No separations technology is proliferation proof.

Alternate LWR Cycle: Th-Pu MOX

Thorium-Based Mixed-Oxide (TMOX) Assembly

Standard 17x17 PWR assembly with 33% MOX loading

- Natural Th serves as the host for Pu in the MOX.
- TMOX not only stabilizes Pu inventory, but consumes Pu.
- Denaturing Th with ²³⁸U reduces ²³³U proliferation risk.
- $(Th,^{233}U)O_2 + Er Pin$
- (Th,Pu)O₂ MOX Pin
- Guide Tube
- Instrument Tube

TMOX Performance

Net Change in Inventory

- With zero ²³⁹Pu production, once-through TMOX allows for a deep burn of the initial Pu loading:
 - 95% ²³⁹Pu destruction
 - 70 % total Pu destruction
- Denaturing U via adding natural U deteriorates the Pu depletion capability.
- Natural U also leads to a larger MA production.

Sacrifice Pu depletion and waste reduction for proliferation resistance

Anti-neutrino Monitoring of Reactor Fuel

• Number of anti-neutrino produced per fission depends significantly on fissionable nuclides:

²³⁵ U: 1.9 ²³⁸ U: 2.4 ²³⁹ Pu: 1.5 ²³¹ Pu: 1.8

- Total anti-neutrino production rate in LWR core could be 10% different between UO₂ and MOX fuel.
- Total anti-neutrino production rate in SFR core could be 20% different between UO₂ and WG-Pu fuel.
- Need accurate data for anti-neutrino production rates for fertile Pu and higher actinides to be able to monitor fuel swaps accurately.

Typical Decay Chain for U-Pu Fuel Cycle

Fission Products for Radionuclide Monitoring

- NAS Report (2012) suggests increased development of radionuclide transport monitoring with the International Monitoring System.
- Lattice physics codes developed for reactor design and fuel depletion calculations focus on nuclides with large neutron absorption cross section:

¹³⁵ Xe:
$$\sigma_a \simeq 2.7 \times 10^6$$
 b, $t_{1/2} = 9.1$ h
¹³³ Xe: $\sigma_a \simeq 190$ b, $t_{1/2} = 5.2$ d
^{133m} Xe: σ_a (?), $t_{1/2} = 2.2$ d

- Remaining 170 FP nuclides are lumped for 5 major U and Pu nuclides.
- ENDF-VII offers nuclear data for ~400 nuclides and TENDL-2013 includes >2000 nuclides.
- Isotopic depletion code ORIGEN represents 1119 FPs but performs one-group ENDF-VI calculations for a few pre-calculated neutron spectra.
- Need to develop accurate FP generation and transmutation modeling capability for representative fuel designs.

Time-dependent Radionuclide Transport Modeling

- Kalman filter generates minimum-variance (optimal) estimates for timedependent system behavior combining uncertain system predictions with noisy observations.
- The filter algorithm naturally accounts for multi-modal observations.
- Recent developments of unscented Kalman filter overcomes the limitation of traditional algorithm requiring linear system representation.

Nuclear Fuel Cycle Analysis and FP Monitoring

- Fuel cycle simulation code VISION represents fuel inventories, material flows, transmutations, economics, and other system interactions for nuclear reactor systems.
- VISION comprises several Excel I/O files built around Powersim system dynamics simulation software.
- Cyclus performs fuel cycle simulations using agent-based algorithms with agent interactions represented via dynamic resource exchange.
- Agent structure allows flexibility in implementing various fuel cycle scenarios and modes of interactions between systems.
- Proliferation markers, e.g., ⁸⁵Kr, ¹²⁹I, and ³H in the off-gas stream of the PUREX process or ¹³³Xe, ¹³¹I, or ¹³⁷Cs emission from clandestine tests could be tracked via Kalman filter and incorporated as a Cyclus agent.
- Ability to model and track FPs accurately will be useful for crosscalibration and benchmarking of IMS data.

