Sensors are used to collect data of
different forms:

* electricity consumption
o satellite Imaging
 radiation emissions

e Internal communication memos
e seismic vibrations
e shipment manifests
e thermal output
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Watts Bar Nuclear Plant, Tennessee http://www.tva.gov/power/nuclear/wattsbar.htm

Event Detection
* Information from sensors are filtered accordingly to obtain events of interests

Unusual power surges are
detected by filtering
Incoming signals against a
baseline signal (e.g. matched
filtering)

Normal power
m usage over a day

Satellite images
monitoring river
flow patterns
over time

System Model
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Questions: ¢: latent variable

1. Can we learn the model for P(6,,0,,05|¢) ?

How many observations are necessary to identify P(¢|X)

What are the sufficient statistics for ¢? e.g., P(S, V|@#)= P(S|¢) P(V|S)

What are the statistical procedures for ¢ ? e.g., multi-view learning [1], hierarchical HMM [2]
Constraints: communication, computational complexity, missing data
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"Event & Anomaly
Correlation Detection

e.g., p-value aggregation
correlation screening
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Test statistics: Aq

Sensor 1 Sensor 2 Sensor 4
Filters: hyj(x1(t)) = hy(t) ho;(t) h;(t) h;(t)
Due to multi-modality, a hierarchical approach is proposed: a;1(1) a1 (T)
1) Each sensor computes p-values of some events A = ) 5 ) 5
iy (1) ai | (T)_
aij(t) = Plhij 2 hij(t))

2) Event correlation at hubs, e.g., aggregate p-values
A; A, — Conjunctive

1—(1—A;)(1— Ax) — Disjunctive
3) At fusion center, event correlation & anomaly or change point detection

Extensions:

* Non-independent sensors: Correlation Screening [3]

» Events composed of sequences of other events

« Communication and energy constraints on the sensors: Decentralized setup

References:
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Decentralized Data Collection: Low-Rate Communications

« Communication constraints e Security concerns
 Energy constraints on sensors * Big data
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Hou, Yasin Yilmaz, Tony Van, Taposh Banerjee, and Alfred Hero

uickest Change Detection [6], [7]
Lid. f, Objective:
Xps.os X / X, Xyt Find stopping time T on {X.}

— » Minimize delay {t -> v}
- * Constraint on false alarm {t <y}
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Cannot detect change through visual inspection Shiryaev’s Algorithm
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Event-Based Transmission of Test Statistics [4], [5]

_______________________________________________ Performance

Quant. step

Lower Transmission Rate

In contrast to traditional Uniform Sampling & Quantization
e Skip the uninformative samples
 Transmit only the change information
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Human Aided Anomaly Detection

Blue Circles = Anomalies, Red Circles = Positive Utility Labels

4 Statistical Outlier .
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Simulation: 5% is anomalous, 23% of anomalous points are considered important by a domain expert

« \Want a model to automatically incorporate domain expert knowledge

o Learn utility function over space of anomalous points (constrained classification)
 Estimate modified minimum volume (MV) sets — high/low penalty for points
Inside/outside the MV set (constraint)

e Practical setting: majority of utility scores missing, domain expert only labels a few
points
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