
• Want a model to automatically incorporate domain expert knowledge 
• Learn utility function over space of anomalous points (constrained classification) 
• Estimate modified minimum volume (MV) sets – high/low penalty for points 
inside/outside the MV set (constraint) 
• Practical setting: majority of utility scores missing, domain expert only labels a few 
points 

Questions: 
1. Can we learn the model for P(θ1,θ2,θ3|ϕ) ?  
2. How many observations are necessary to identify P(ϕ|X) 
3. What are the sufficient statistics for ϕ? e.g., P(S, V|ϕ)= P(S|ϕ) P(V|S) 
4. What are the statistical procedures for ϕ ? e.g., multi-view learning [1], hierarchical HMM [2] 
5. Constraints: communication, computational complexity, missing data 
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Analysis Model 

Human Aided Anomaly Detection 

Simulation: 5% is anomalous, 23% of anomalous points are considered important by a domain expert 

Due to multi-modality, a hierarchical approach is proposed: 
1) Each sensor computes p-values of some events 

 
 

2) Event correlation at hubs, e.g., aggregate p-values  
 
 

3) At fusion center, event correlation & anomaly or change point detection 

Quickest Change Detection [6], [7] 
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Cannot detect change through visual inspection Shiryaev’s Algorithm 
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Decentralized Data Collection: Low-Rate Communications 
• Communication constraints 
• Energy constraints on sensors 

Event-Based Transmission of Test Statistics [4], [5] 

In contrast to traditional Uniform Sampling & Quantization 
• Skip the uninformative samples 
• Transmit only the change information 
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Nuclear Facility Monitoring 
Sensors are used to collect data of 
different forms: 
• electricity consumption 
• satellite imaging 
• radiation emissions 
• internal communication memos  
• seismic vibrations 
• shipment manifests  
• thermal output 
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Unusual power surges are 
detected by filtering 
incoming signals against a 
baseline signal (e.g. matched 
filtering) 

• Information from sensors are filtered accordingly to obtain events of interests 
Event Detection 

System Model 
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Watts Bar Nuclear Plant, Tennessee http://www.tva.gov/power/nuclear/wattsbar.htm  

Extensions: 
• Non-independent sensors: Correlation Screening [3] 
• Events composed of sequences of other events 
• Communication and energy constraints on the sensors: Decentralized setup 

• Security concerns 
• Big data 

Objective: 
• Find stopping time τ on {Xn} 
• Minimize delay {τ -> γ} 
• Constraint on false alarm {τ < γ} 

Human Domain Expert 
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Statistical Outlier 
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