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Thrust II personnel

Alfred Hero (UM EECS/BME/STATS): Event correlation
and anomaly detection

John Fisher (MIT CSAIL): dynamic graphical models

Lawrence Carin (Duke ECE): compressive sensing for
high-dimensional data

Sara Pozzi/Shaun Clarke (UM NERS): physics of fission

John Mattingly (NCSU NE): High-throughput radiation
detection systems
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Thrust II personnel (ctd)

 Funded by CVT
— Elizabeth Hou (UM STATS): CVT Fellow (poster)
— Charles Sosa (UM NERS), CVT Fellow (poster)
— David Carlson (Duke ECE), CVT Fellow
— Sue Zheng (MIT CSAIL), CVT Fellow*
— Yassin Yilmaz (UM EECS): post-doctoral fellow (poster)
— Taposh Banerjee (UM EECS): post-doctoral fellow (poster)
— Angela Di Fulvio (UM NERS), post-doctoral fellow funded
— Xuejun Liao (Duke ECE), post-doctoral fellow
— Oren Freifeld (MIT CSAIL), post-doctoral fellow*

 Funded from non-CVT sources
— Tony Van (UM STATS): M.S. student (poster)
— Matthew Marcath (UM NERS), Ph.D candidate (poster)
— Tony Shin (UM NERS), M.S. student
. — Steve Ward (UM NERS), M.S. student
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Thrust II Kickoff Presentations

Oral presentations
 “Fundamental physical data acquisition and analysis,” Al Hero (UM)

* “Convolutional dictionary learning and feature design,” Larry Carin
(Duke)

e “Graphical models for query-driven analysis of multimodal data,”
John Fisher (MIT)

* “Correlations in prompt neutrons and gamma rays from fission,”
Shaun Clarke (UM)

* “Data compression and analysis methods for high-throughput
Detector Systems,” John Mattingly (NCSU)

Also see our Thrust Il poster presentations
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Multi-layered data acquisition
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Bayes networks
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Event correlation and anomaly detection

* Challenges

— Sensors are highly distributed and asynchronous

* Large standoff: satellite EO/IR imaging, SAR, RF, seismic,
ISR

* On-site: utility monitoring, surveillance, radionuclide
detectors, emissions, outflows

— Information sources are diverse
* Video, images, waveforms, text

— Event correlation at different time/space scales
— Incipient changes may be barely detectable
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Event correlation and anomaly detection

* Elements of our approach

— Statistical hierarchical modeling of heterogeneous event
streams

— Correlation mining with constraints on
communication/computation/timeliness

— Fundamental performance limits and benchmarks
* Application areas

— Human-aided anomaly detection

— Event-driven compressive sampling

— Quickest change detection
— Distributed event correlation

e See our poster today for details on these areas
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Correlation mining

Network of sensors measures spatio-temporal random field

Data streams

Qze%n{%

20 sensors in a random field Time index

* Are any of the streams correlated over space or time?
* Are there interesting patterns of correlation?

* Have these patterns changed recently wrt a baseline?
* How much data is required to answer these questions?
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The problem of false alarms

Network of sensors measures spatio-temporal random field
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Thresholded correlation

Correlation network

20 sensors in a random field

* Event detection: a pattern of correlation between sensors
exceeds a threshold p

* Question: What is minimum required number n of samples to
correlate information from p different sensors?

 Answer: Can determine from critical phase transition threshold [1]
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The problem of false alarms

* When correlation matrix is sparse there is phase transition

n=101, p=100 n=25 p=100 n=10, p=100
200 200 " 200 :
150 1 150 150
100 1 100 100
50 ‘ 50 50
0 0 0
-1 0 1 -1 0 1 -1 0 1
Sample correlation value Sample correlatigh value Sample correlation value
p. = 1+0.34 p. = +0.63 p. = +0.89

* Phase transition encountered as decrease the threshold p
* Critical phase transition threshold p. increases in nand p [1]

Pe = \/1 =2 Cn(p o ]_)_2//(’7_4)
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Phase transition chart

FHASE TRANSITION THRESHOLD
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Phase transition chart
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Spatio—temporal correlation mining

Wind speed data (1948 2012) Kronecker PCA: C =Y, 4; ® B;
. 100 stations 10x10 grid 7~ g

Sample cov C K-PCA Approx

e 2-day time windows (8
sample snapshots)

e Period: 2001 to 2007

* p=100, q=8, n=224

200 400 600 800 200 400 600 800

* Kronecker vs ordinary PCA
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Conclusions

* Analysis team brings expertise from the areas of
— Statistical machine learning and graphical models
— Anomaly detection, quickest detection and correlation mining
— Compressive sensing and dictionary learning
— Physical models and their simulation

* Fundamental limits and algorithms and models are
equally important.

* See our poster today:

“Event correlation and anomaly detection,” Elizabeth Hou, Yasin
Yilmaz, Tony Van, Taposh Banerjee, Al Hero
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