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Of particular utility to the goal of reliably verifying that signatories are meeting their disarmament and nonproliferation obligations are technologies that make it
possible to perform rapid measurements of elemental and isotopic composition of materials at a considerable standoff. Laser-induced breakdown spectroscopy can
be augmented by concurrent spectroscopic measurements of both atomic and molecular emissions following the recombination of laser-ablated plasmas with the
ablated sample and the surrounding environment. The use of relatively compact ultrafast, high intensity lasers also opens the possibility of standoff measurements by
propagating the laser pulse over laser-induced plasma filaments produced in nonlinear interactions between the laser pulse and the atmosphere. We will
experimentally investigate the feasibility of performing standoff isotopic composition measurements of relevance to treaty verification by use of filamentation LIBS.

Material Verification: Sample Preparation vs In Situ Analysis

LIBS Emission and Isotopic Shift

The goal of nuclear material verification is to obtain information about an interdicted or remotely interogated sample or
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Measured LIBS Spectra

Experimental Infrastructure for LIBS Measurement
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Isotopic Results Utilizing B,C Samples Future Work

The spectra of three boron carbide samples were used to calibrate a multivariate model relating emissions to Since most elements form diatomic oxides when ablated in air, we expect that we can extend this method to
isotopic ratios. Predicted values for the three samples fell within 2% of actual values. other elements- specifically enriched uranium. Investigation and Modeling efforts in conjunction with our
collaborators will be furthered to understand reported matrix effects from mixed samples.
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