

Infrasound, in Context

M. A. Garces, Infrasound Laboratory University of Hawaii at Manoa

milton@isla.hawaii.edu

Consortium for Verification Technology, October 2014

New 2015-2019 Project: NNSA Consortium for Verification Technology (CVT)

Department of Energy FOA-0000892

Primary CVT Lead: Prof. Sara A. Pozzi
Department of Nuclear Engineering and Radiological Sciences
University of Michigan

- The CVT's overarching theme is the advancement of the state-of-the-art in technologies and policies related to the verification of these treaties.
- The CVT consists of thirteen leading universities and eight national laboratories that will provide the R&D and human capital needed to address technology and policy issues in treaty-compliance monitoring.

Thrust Area 4: Detection of Undeclared Activities and Inaccessible Facilities

TA4 Infrasound Lead: Dr. Milton A. Garcés

Infrasound Laboratory, University of Hawaii, Manoa

Lab: 1.808.327.6206, Cell: 1.808.960.6393, Email: milton@isla.hawaii.edu

- Next-Generation Sensor Development
- Ground Truth Event Re-Evaluation
- Source Characterization

Infrasound Technology Roadmap

Disruptive Approaches

- ➤ ID Source Radiation Patterns (Pilger, et al., EGU14, ITW14)
- ➤ Machine Learning
- ❖ Both disruptive topics are hindered by sparsity
- ❖ More is better High N initiatives in seismology for full waveform capture
- \clubsuit Legacy infrasound networks: $10^2 10^3$ channels global
- \bullet How about $10^4 10^6$ infrasound channels?

Infrasound Net, 60%: 03-Jan-2009 00:00:00

SLA

Test: ITEM, Nexus5 BOSH barometer and iPhone5 MEMS microphone

Standardized Infrasound metrics Frequency (ISO-03/ANSI/ASA)

The center frequency of the 1/N octave band (N = 1, 3, 6, 12, 24) referenced to $f_0 = 1$ Hz in the infrasound range can be defined by the Renard Series $(s_N = 10\text{N}/3 = 10/3, 10, 20, 40, 80)$

$$f_{cN} = f_0 10^{\frac{3}{10N}} n_N = f_0 10^{\frac{n_N}{s_N}}, \quad n_N \in \mathbb{Z}.$$

IMS OCTAVE BANDS

$$10^{3n1/10} [n_1 = -6 \dots 2] \sim 2^n$$

[0.016, 0.0315, 0.063, 0.125, 0.25, 0.5, 1, 2, 4]

Context

Within the framework of ubiquitous system design, context may be defined as "any information that can be used to characterize the situation of entities (i.e. whether a person, place or object) that are considered relevant to the interaction between a user and an application, including the user and the application themselves. There are four essential categories, or characteristics, of context information: identity, location, status (or activity) and time" (Denzil, 2013).

Who, where, what, when ... and why.

Context-based Wireless Sensor Networks

Different domain, different vocabulary

- Middleware is the key interface between App and the Operating System
- Software engineering and programming skill set
- LAMP (Linux, Apache, MySQL, Perl/PHP/Python) stack may be inadequate
- Standard data schemas where sensor sample rate is stable and position is static are inadequate

IoT, Big Data framework

- Identity is sensitive
- Statistics rule. Bayesian framework generally assumed.
- Parallel computing and machine learning
- Clear, robust standards and metrics are needed!

Basic Concept

- 1. Capture infrasound with App using on-board microphone and barometers
- 2. Send, process and plot in server

Pilot study: capability demonstration

