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Motivation

• In sensing systems, the representation used for the incoming data may
significantly impact performance

• This is typically termed feature extraction, which is often performed
with hand-crafted features

• Ideally the data representation is performed jointly with the learning
task

• Much recent success using “deep” architectures, and convolutional
neural networks

• Have made connections to recent ideas in dictionary learning and
sparse signal representations, with goal of demystifying
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Dictionary Learning

• There has been significant recent interest in dictionary learning for
image representation

• Consider an image, which we represent via the matrix X ∈ Rn×m

• The overall, large image is represented by a set of patches {xi}i=1,N ,
which may be overlapping

4



Dictionary Learning: Formulation

• Given a set of image patches {xi}i=1,N , we may infer a dictionary
representation

xi = Dwi + εi

where xi ∈ Rp, D ∈ Rp×K , and wi ∈ RK is sparse

• Typically the dictionary is over-complete, meaning K > p, and for
images we often set p = 8 · 8 · 3 = 192

• Typical setup:

D̂, {ŵi} = argminD,{wi}

N∑
i=1

‖xi −Dwi‖22 + λ1

K∑
k=1

‖dk‖22 + λ2

N∑
i=1

‖wi‖1
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Figure 1: Comparison of interpolation results, considering BP (PSNR 26.90 dB) and dHBP (PSNR 29.92 dB) on the
Barbara256 image, with 80% of its pixels missing uniformly at random. In the first row, the left two images show the
spatially-dependent number of atoms ‖Xi‖0 used for representation of the patches throughout the image, as computed
by BP and dHBP, respectively, the third is the dHBP reconstruction, and the fourth and fifth images show two different
enlarged regions (top left, top right, bottom left and bottom right quarters corresponding to the original image under
test, the BP reconstruction, the dHBP reconstruction, and the original versions, respectively). In the second row, the first
two images show the dictionaries (the atoms are ordered based on their probabilities to be selected) inferred by BP and
dHBP, respectively, and the third to sixth images show four dictionary atoms (resized from the size of 8 × 8 to 80 × 80
for visualization) and the associated atom activation probabilities across the image (each patch has a corresponding πik).
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Figure 2: Comparison of interpolation results, considering BP and dHBP on the 512 × 512 Boat and Hill images, with
80% of their pixels missing uniformly at random. The left-most and third images show the dHBP reconstructions of Boat
and Hill, respectively. The second and fourth images show two enlarged regions as in Figure 1.

Table 1: Gray-scale image interpolation results (PSNR) for BP and dHBP, both using patch size 8 × 8. The top and
bottom rows of each cell show the results of BP and dHBP, respectively.

ratio C.man House Peppers Lena Barbara Boats F.print Man Couple Hill

20%
24.11 30.12 25.92 31.00 24.80 27.81 26.03 28.24 27.72 29.33
24.43 32.23 27.06 32.00 29.51 28.66 26.80 28.86 28.55 29.94

30%
25.71 33.14 28.19 33.31 27.52 30.00 29.01 30.06 30.00 31.21
26.50 35.64 29.30 34.23 32.29 30.90 29.23 30.76 30.65 31.67

50%
28.90 38.02 32.58 36.94 33.17 33.78 33.53 33.29 35.56 34.23
29.89 38.83 32.90 37.14 36.03 33.92 32.70 33.72 33.54 34.14

Table 2: Joint image interpolation and denoising results (PSNR) for BP and dHBP, considering the Barbara256 image
and patch size 8 × 8. The observed data ratio ranges from 20% to 50% and the noise standard deviation ranges from 0
to 25. The top and bottom rows of each cell show the results of BP and dHBP, respectively.

0 5 10 15 20 25

20%
26.90 26.81 26.25 25.30 24.44 23.74
29.92 29.22 27.90 26.65 25.63 24.73

30%
30.01 29.73 28.38 27.00 25.94 25.00
32.49 31.43 29.71 28.20 27.01 26.02

50%
35.41 33.59 31.16 29.31 27.89 26.80
36.83 34.42 31.94 30.20 28.77 27.77

patches). The BP results are similar to those produced
by KSVD (Aharon et al., 2006; Elad and Aharon,
2006). In Fig. 1 we consider the 256×256 Barbara256
image, with 80% of its pixels missing uniformly at
random. In Fig. 2 we show the comparison on the
512 × 512 Boat and Hill images. The dHBP yields
sharp dictionary atoms, and the atom usage frequency
map (spatial dependence of ‖Xi‖0) reflects the local

complexity of the image. Note from Fig. 1 that the
dHBP yields substantially more structured dictionary
elements than BP, implying that dHBP better tailors
dictionary elements to local structure in the image.

Quantitative comparisons between BP and dHBP on
image interpolation are shown in Table 1. Quanti-
tative comparisons for joint image interpolation and
denoising on the Barbara256 image are shown in Ta-

6



Outline

1 Background

2 Convolutional Dictionary Learning

3 Hierarchical, Deep Architecture

4 Convolutional Neural Network

5 Summary

7



Convolutional Dictionary Learning

• Using the patch representation yields many redundant dictionary
elements, that are simply shifts of a basic dictionary type

• Now perform dictionary learning directly on the entire image X:

X =

K∑
k=1

dk ∗Wk +E

where dk is again a dictionary element over a small patch size, but
now Wk is a sparse activation map over the entire image

• Solution methodology

D̂, {Ŵk} = argminD,{Wk}‖X−
K∑
k=1

dk∗Wk‖2F+λ1
K∑
k=1

‖dk‖22+λ2
K∑
k=1

‖Wk‖1

8



Efficient Implementation

D̂, {Ŵk} = argminD,{Wk}‖X−
K∑
k=1

dk∗Wk‖2F+λ1
K∑
k=1

‖dk‖22+λ2
K∑
k=1

‖Wk‖1

• By moving away from the patched-based solution, we remove many
redundant dictionary elements which are shifted and clipped versions
of basic types

• By using FFTs, the convolution operation may be made fast

• We learn the dictionary D̂ “offline,” based on many training images

• For a test image D is fixed, and we must solve

{Ŵk} = argmin{Wk}‖X−
K∑
k=1

dk ∗Wk‖2F + λ2

K∑
k=1

‖Wk‖1

• Still relatively expensive at test time; we return to this
9
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Multiscale Convolutional Dictionary Learning

D̂, {Ŵk} = argminD,{Wk}‖X−
K∑
k=1

dk∗Wk‖2F+λ1
K∑
k=1

‖dk‖22+λ2
K∑
k=1

‖Wk‖1

• The mapping X→ {Wk} constitutes a set of K feature (dictionary
activation) maps

• The scale of these features are dictated by the size of the dictionary
elements dk

• We can use the feature “stack” {Wk}k=1,K as new input data, and
then we can perform dictionary learning on these features

• Useful to perform “pooling” when going to the next layer, to increase
the effective size of the dictionary elements at the next level in the
hierarchy

11



Multiscale Convolutional Dictionary Learning

Fig. 2. Explanation of max pooling and collecting of coefficients from layer one, for analysis at layer two (a similar procedure
is implemented when transiting between any two consecutive layers in the hierarchical model). The matrix W

(1)
nk defines the shift-

dependent coefficients {w(1)
nki}i∈S(1) for all two-dimensional shifts of dictionary element {d(1)ki }i∈S(1) , for image n (this same max-

pooling is performed for all images n ∈ {1, . . . , N}). The matrix of these coefficients are partitioned with spatially contiguous blocks
(bottom-left). To perform max pooling, the maximum-amplitude coefficient within each block is retained, and is used to define the
matrix Ŵ

(1)
nk (top-left). This max-pooling process is performed for all dictionary elements d(1)k , k ∈ {1, . . . ,K(1)}, and the set of

max-pooled matrices {Ŵ(1)
nk }k=1,K(1) are stacked to define the tensor at right. The second-layer data for image n is X

(2)
n , defined

by a tensor like that at right. In practice, when performing stacking (right), we only retain the K̂(2) ≤ K(1) layers for which at least
one b

(1)
nki 6= 0, corresponding to those dictionary elements d(1)k used in the expansion of the N images.

pooling step, the number of spatial positions in such images decreases as one moves to higher levels. Therefore,

the basic computational complexity decreases with increasing layer within the hierarchy. This process may be

continued for additional layers; in the experiments we consider up to three layers.

C. Model features and visualization

Assume the hierarchical factor-analysis model discussed above is performed for L layers, and therefore after

max-pooling the original image Xn is represented in terms of L tensors {X(l)
n }l=2,L+1. The index l increases

as one moves up the hierarchy away from the image plane, with K̂(l) “spectral” bands at layer l, and X
(1)
n

correspond to the original nth image, for which K̂(1) = Kc. It is of interest to examine the physical meaning

of the associated dictionary elements (as shown in Figure 1, for Layer 1 and Layer 2 dictionary elements).

A dictionary element at a layer l > 1 corresponds to a set of (generally contiguous) max-pooled factor scores

from layer l− 1. One may sequentially map a dictionary element from any layer l > 1 to a set of factor scores

below, until at the lowest level the factor scores correspond to dictionary elements in the image plane. Because

of the max-pool step, when performing such a synthesis a coefficient at layer l must be associated with a

location within the respective max-pool sub-region at layer l− 1. When synthesizing examples in Section V of

dictionary elements projected onto the image plane, the coefficients are arbitrarily situated in the center of each

7
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Unsupervised Feature Learning

Fig. 2. Explanation of max pooling and collecting of coefficients from layer one, for analysis at layer two (a similar procedure
is implemented when transiting between any two consecutive layers in the hierarchical model). The matrix W

(1)
nk defines the shift-

dependent coefficients {w(1)
nki}i∈S(1) for all two-dimensional shifts of dictionary element {d(1)ki }i∈S(1) , for image n (this same max-

pooling is performed for all images n ∈ {1, . . . , N}). The matrix of these coefficients are partitioned with spatially contiguous blocks
(bottom-left). To perform max pooling, the maximum-amplitude coefficient within each block is retained, and is used to define the
matrix Ŵ

(1)
nk (top-left). This max-pooling process is performed for all dictionary elements d(1)k , k ∈ {1, . . . ,K(1)}, and the set of

max-pooled matrices {Ŵ(1)
nk }k=1,K(1) are stacked to define the tensor at right. The second-layer data for image n is X

(2)
n , defined

by a tensor like that at right. In practice, when performing stacking (right), we only retain the K̂(2) ≤ K(1) layers for which at least
one b

(1)
nki 6= 0, corresponding to those dictionary elements d(1)k used in the expansion of the N images.

pooling step, the number of spatial positions in such images decreases as one moves to higher levels. Therefore,

the basic computational complexity decreases with increasing layer within the hierarchy. This process may be

continued for additional layers; in the experiments we consider up to three layers.

C. Model features and visualization

Assume the hierarchical factor-analysis model discussed above is performed for L layers, and therefore after

max-pooling the original image Xn is represented in terms of L tensors {X(l)
n }l=2,L+1. The index l increases

as one moves up the hierarchy away from the image plane, with K̂(l) “spectral” bands at layer l, and X
(1)
n

correspond to the original nth image, for which K̂(1) = Kc. It is of interest to examine the physical meaning

of the associated dictionary elements (as shown in Figure 1, for Layer 1 and Layer 2 dictionary elements).

A dictionary element at a layer l > 1 corresponds to a set of (generally contiguous) max-pooled factor scores

from layer l− 1. One may sequentially map a dictionary element from any layer l > 1 to a set of factor scores

below, until at the lowest level the factor scores correspond to dictionary elements in the image plane. Because

of the max-pool step, when performing such a synthesis a coefficient at layer l must be associated with a

location within the respective max-pool sub-region at layer l− 1. When synthesizing examples in Section V of

dictionary elements projected onto the image plane, the coefficients are arbitrarily situated in the center of each

7

• The multiscale dictionary elements may be learned in an unsupervised
manner

• Allows leveraging of massive quantities of unlabeled, but relevant data

• Fine-scale tuning may be performed subsequently, using labels or
rewards (in the RL case)

• Connect label/action/policy to features at the top of the hierarchy

13



Learned Convolutional Dictionary Elements

• Applied to Caltech 101 database

• Layer 1 dictionary elements:

visual form/structure of the inferred dictionary elements, with less impact on classification performance). Layer

1 dictionary elements d(1)
k are of size 11 × 11, and the max-pooling ratio is 5. We consider 4 × 4 dictionary

elements d(2)
k , and 6×6 dictionary elements d(3)

k . The max-pooling ratio at Layers 2 and 3 is set as 2. The beta-

Bernoulli truncation level was set as K = 200. We first consider modeling each class of images separately, with

a three-level model considered, as in [7]; because all of the images within a given class are similar, interesting

and distinctive structure is manifested in the factor loadings, up to the third layer, as discussed below. In these

experiments, the first set of results are based upon Gibbs sampling.

There are 102 image classes in the Caltech 101 data set, and for conciseness we present results here for

one (typical) class, revisiting Figure 1; we then provide a summary exposition on several other image classes.

The Layer 1 dictionary elements are depicted in Figure 7, and we only focus on d(2)
k and d(3)

k , from layers

two and three, respectively. Considering the d(2)
k (in Figure 1(a)), one observes several parts of cars, and for

d
(3)
k (Figure 1(d)) cars are often clearly visible. It is also of interest to examine the binary variable b(2)nk , which

defines which of the candidate dictionary elements d(2)
k are used to represent a given image. In Figure 1(b) we

present the usage of the d(2)
k (white indicates being used, and black not used, and the dictionary elements are

organized from most probable to least probable to be used). From Figures 1(c) and 1(f), one notes that of the

200 candidate dictionary elements, roughly 134 of them are used frequently at layer two, and 34 are frequently

used at layer three. The Layer 1 dictionary elements for these data (typical of all Layer 1 dictionary elements

for natural images) are depicted in Figure 7.

Fig. 7. Layer 1 dictionary elements learned by a Gibbs sampler, for the Caltech 101 dataset.

In Figure 8 we show Layer 2 and Layer 3 dictionary elements from five additional classes of the Caltech

101 dataset (the data from each class are analyzed separately). Note that these dictionary elements take on a

form well matched to the associated image class. Similar class-specific Layer 2 and object-specific Layer 3

dictionary elements were found when each of the Caltech 101 data classes was analyzed in isolation. Finally,

18

• Second (left) and third (right) layer dictionary elements:

(a) (b) (c)

Fig. 9. Joint analysis of four image classes from Caltech 101, based on Gibbs sampling. (a) Original images; (b) layer-two dictionary
elements d(2)k , (c) layer-three dictionary elements d(3)k . All figures in (b) and (c) are shown in the image plane.

reasonable computational cost could be achieved on the available computer), and online VB was considered

using mini-batch sizes of 10, 20 and 50. Figure 11 demonstrates model fit to the held-out data, for the batch

VB/Gibbs and online VB analysis, as a function of computation, in the same manner as performed in Figure

6. For this case the limitations of batch VB and Gibbs sampling (not able to use as much training data, and

hence poorer generalization to held-out data) is evident at both Layers 1 and 2, which is attributed to the fact

that the Caltech 101 data are more complicated than the MNIST data.

To examine dictionary-element usage, Figure 12 we show Layer 2 dictionary usage for a set of 50 face test

images. Note from Figure 12(b) that for a given image typically more than half of the dictionary elements at

this layer are not employed.

(a) (b)

Fig. 10. The inferred Layer 1 and Layer 2 dictionary for Caltech 101 data. (a) Layer 1 and Layer 2 dictionary elements inferred by
batch variational Bayesian on 1,020 images; (b) Layer 1 and Layer 2 dictionary elements inferred by online variational Bayesian on
the whole data set (9,144 images).

20
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Fast Approximate Analysis

• Recall that, for a test X, using previously learned convolutional
dictionary D, we must solve

{Ŵk} = argmin{Wk}‖X−
K∑
k=1

dk ∗Wk‖2F + λ2

K∑
k=1

‖Wk‖1

• Relatively expensive

• Instead implement a convolutional filterbank followed by a pointwise
nonlinear function

ĝ(·), f̂k = argming,fk
‖Wk − g(X ∗ fk)‖F

• In practice we have a series of convolutional filterbanks, followed by a
nonlinear function, and then a pooling operation

• The pooling plays an important role in achieving robustness, and
accuracy of the above approximation

16



Our Implementation Methodology

• When learning the model architecture, sparsity plays a key role

• Have utilized a structure related to adaptive Lasso, via

wj ∼
1

2

√
τ/γj exp(−|wj |

√
τ/γj)

∼
∫
N (wj ; 0, τ

−1α−1)InvGa(α; 1, (2γj)
−1)dα

• Impose sparsity promotion via a heavy-tailed gamma process on γj

• Bayesian setup used to infer the number of filterbanks at each level of
the hierarchy

17



Bayesian Inferred Dictionary Usage

achieved such physically interpretable dictionary elements at the higher layers in the model. A unique aspect

of the proposed model is that we infer a posterior distribution on the required number of dictionary elements,

based on Gibbs sampling, with the numerical histograms for these numbers shown in Figures 1(c) and (f),

for layers two and three, respectively. Finally, the Gibbs sampler infers which dictionary elements are needed

for expanding each layer, and in Figures 1(b) and (e) the use of dictionary elements is shown for one Gibbs

collection sample, highlighting the sparse expansion in terms of a small subset of the potential set of dictionary

elements. These results give a sense of the characteristics of the proposed model, which is discussed in detail

in the subsequent discussion.
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Fig. 1. Dictionary learned from Car dataset. (a) frequently used dictionary elements d(2)k at the second layer, organized left-to-right
and top-down by their frequency of usage; (b) dictionary usage at layer two, based on typical collection sample, for each of the
images under analysis (white means used, black means not used); (c) approximate posterior distribution on the number of dictionary
elements needed for layer two, based upon Gibbs collection samples; (d) third-layer dictionary elements, d(3)k ; (e) usage of layer-
three dictionary elements for a typical Gibbs collection sample (white means used, black means not used); (f) approximate posterior
distribution on the number of dictionary elements needed at layer three. All dictionary elements d(2)k and d(3)k are shown in the image
plane.

The remainder of the paper is organized as follows. In Section II we develop the multi-layer factor analysis

viewpoint of deep models. The detailed form of the Bayesian model is discussed in Section III, and methods

for Gibbs, VB and on-line VB analysis are discussed in Section IV. A particular focus is placed on explaining

how the convolution operation is exploited in the update equations of these iterative computational methods.

4
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